An investigation of Hardy's Paradox using weak measurements

Jeff Lundeen Aephraim Steinberg Conter for Quantum Information and Quantum Control University of Toronto

CLEO/QELS May 2005

Funding by:

Motivation

Hardy's Paradox

Direct contradiction involving the results of two observers

- logical inequality

David Mermin: Hardy's Paradox "stands in its pristine simplicity as one of the strangest and most beautiful gems yet to be found in the extraordinary soil of quantum mechanics" - N. D. Mermin, Am. J. Phys. 62, 880 (1994).

Problem: The measurements leading to Hardy's Paradox do not commute. Since they disturb the system we can not perform them simultaneously to test their veracity.
Solution: Eliminate (or at least minimize) the disturbance How: Turn down the coupling to the measurement device

Weak Measurement

Interaction-Free Measurement

- Indirect measurement
- Still works if bomb is in a quantum superposition

Hardy's Paradox

- Can we talk about the past in postselected QM?
- How should we interpret indirect quantum measurements?

Experimental Setup

Experimental Data

Experimental Data

Testing IFM+ If D+ clicks	 ⇒ Photon is in arm I- 96% Photon is in arm O- 4% 	
Testing IFM- If D- clicks	 ⇒ Photon is in arm I+ 97% Photon is in arm O+ 3% 	
Testing SwitchRate of photon pairs in I+ and I- $= 10.4 \pm 0.33/5s$		
The Paradox	Rate of D+ and D- coincidences = 7.28 ± 0.41/5s	

Weak Measurements

Aharonov, Albert,&Vaidman , PRL 60, 1351 ('88)			
Measurement of Â	Pointer Position Uncertainty	H _{int} =gPÂ	Pointer(X)=exp[-(X-gt A_W) ² / Δ X]
Ideal	Dirac Delta	∆X=0	Average shift of pointer: Weak Value = $A_W = \frac{\langle \phi A \psi \rangle}{\langle \phi \psi \rangle}$ E $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ F
Real	Width << Change in Position	∆X<< gt	
Weak	Width >> Change in Position	$\Delta X >> gt$	

Since: $\Delta X \Delta P \ge h/2\pi$

 \Rightarrow small disturbance

 \Rightarrow little system – pointer entanglement

Useful for investigating post-selected systems: Hardy's Paradox

For the paradoxical result (Post-selecting on D₊ & D₋ click):

Weakly measure which arms the particles were in, individually and as **pairs**.

Two-Particle Weak Measurements

• Problem: For two-particle weak measurements we need a strong nonlinearity to implement a Von Neuman measurement interaction $(H_{int}=gP\hat{A}_1\hat{A}_2)$.

- Solution: Do two single particle weak measurements \rightarrow Measure correlations in the two separate pointers

Pointer Polarization Correlations for $\langle \hat{A}_1 \hat{A}_2 \rangle_{weak}$

Weak Measurement for a Polarization Pointer (N particles):

$$\left\langle \prod_{j=1}^{N} \hat{A}_{j} \right\rangle_{W} = \left\langle \prod_{j=1}^{N} \hat{S}_{jz}^{-} \right\rangle_{fi} \left(\frac{1}{gt\hbar s} \right)^{N}$$

Spin Lowering Operator

Lundeen & Resch, Phys. Lett. A 334 (2005) 337–344 Resch & Steinberg, PRL 92,130402 (2004)

Weak Measurements in Hardy's Paradox

Y. Aharanov, A. Botero, S. Popescu, B. Reznik, J. Tollaksen, Phys. Lett. A 301, 130 (2001)

Conclusions

- A single-photon level switch allows for the implementation of Hardy's Paradox.
- Weakly measuring where in the interferometers the photons were gives results that resolve the paradox.
- This is the first experimental two-particle weak measurement.
- Weak measurements are useful for investigating post-selected systems (e.g. LOQC)

lundeen@physics.utoronto.ca