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Spontaneous FWM

• Two pump photons are 
spontaneously converted into two 
sideband photons in a χ(3)

material.

• small core size (→ high intensity)
and long interaction length 
compensate for small χ(3) vs. the 
χ(2) in crystals

… as well as momentum
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Heralded Single-Photons

• Discrete Variable 
measurement-based 
quantum-computing 
requires heralded photons 
and a quantum memory

• High visibility Hong-Ou-Mandel interference is critical for optical 
quantum logic gates. For this we need photons in a pure state.
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The Two-photon Spectrum

• Energy and momentum conservation create correlations 
between the two photons. 

• Single photon detectors do not have fs time- or nm spectral-resolution
• This leads to a fundamental problem 
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Timing Jitter

Coincidence 
Counts

Space-time entanglement between 
signal and trigger photons leads to 
timing and frequency jitter between 
photons from the two sources, even 
using very short pump pulses
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Visibility = Tr( ρ1 ρ2)≈Tr(ρ2) = Purity^ ^ ^



The Solution

Fibre
function

Pump envelope
function

Joint spectral
amplitudex =

~σpump

• The goal is a factorable joint spectrum: f(ωs,ωi)=h(ωs)·g(ωi)

•With a single pump beam we can make the following approximation:

fixed at 45° 90°< θII < 180°
for a factorable state

~1/L

θII = -arctan(τs/τi)

θII

• Design the fiber to have the correct dispersion for a factorable state
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Pure photons in SPDC

Experimental Joint Spectrum
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Purity > 95%

Hong-Ou-Mandel dip

• Heralding efficiency up to 44%
• Four-photon count rates as good as the best sources but with 1/10 the
pump power. (currently get 60 /s with 300 mW/crystal)
• High quality interference with no filters
• Broadest bandwidth heralded photons

Peter Mosley, Jeff Lundeen,…
Phys. Rev. Lett. 100, 133601 (2008)

• Drawbacks:
� bulk source (hard to couple to fibers)
� limited to natural dispersion of nonlinear crystals

• With careful choice of dispersion in a χ(2) crystal we have 
engineered the modes the photons are emitted into:



Fibre sources of pure photons

• We modelled the dispersion in a solid-core microstructured fiber
Optics Express, 15,14870-14886 (2007)

• Any orientation of the phasematching function is possible:
� factorable states, frequency correlated or anti correlated states

1st order 
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Spontaneous FWM Spectrum

Pump beam

Raman

• we record the spectrum of generated light and measure the idler
and signal wavelengths.
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Finding the right fibre

• At the factorable point, ωi is constant as ωpump is varied 
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PCF: Crystal Fibre NL-1.8-750 
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Predicted Purity=86% to 91%



Polarization Test of Purity
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Checking the purity
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• Singles show that both beams are unpolarized
• The two-folds show regular polarization curves
• The four-folds exhibit non-classical interference
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Summary

• Modal design of photons is possible with four 
wave mixing.

• Microstructured nonlinear sources (e.g PCF) 
allow us to directly engineer the spectral 
properties of the photons.

• Generation of heralded unfiltered pure-state 
photons has been demonstrated in a waveguide 
→ integrated optical circuits → scalable 
quantum information.

• A wide range of states are possible in the same 
fibre: factorable, ultra-broadband, frequency 
correlated, frequency anti-correlated.



Past demonstrations of pair generation in fibres
• J. E. Sharping, M. Fiorentino, and P. Kumar, Opt. Lett. 26, 367–369 (2001)
• H. Takesue and K. Inoue, Phys. Rev. A 70, 031802(R) (2004) 
• J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, Opt. Exp. 13. 534 (2005)
• J. Fan and A. Migdall, Opt. Exp. 13, 5777 (2005)

Experimental generation of pure state photons in SPDC:
Peter Mosley, et al. Phys. Rev. Lett. 100, 133601 (2008)

Fibre:
Crystal Fiber NL-1.8-750
Length=40cm
Core diameter=1.75 µm
Fill fraction=50%

Pump:
0.7 mW per pass
λp = 785 nm
∆λp = 8 nm
76 MHz

Photon Pairs:
λi = 860 nm
∆λi = 2 nm
λs = 720 nm
∆λs = 8 nm
Coinc = 15000 /s
4-folds = 3 /s
Accidentals/coinc < 1/25

Just the facts

Engineering spectral correlations in SFWM in fibres:
K. Garay-Palmett, et al. Optics Express, 15,14870-14886 (2007)



Filtering

Interference filter 1

Interference filter 2

• Spectral filtering can remove correlations by making the photon duration 
larger than the timing jitter 
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