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� A major goal is to experimentally completely 
characterize the evolution (and decoherence) in a 
quantum system in order to tailor error-control to that 
particular physical system.

� The tools are "quantum state tomography" and "quantum 
process tomography": full characterisation of the density 
matrix or Wigner function, and of the "$$uperoperator" 
which describes its time-evolution.

� Feedback � for adaptive identification of optimal error 
control strategies. 

The Goal

Polarized PHOTONS and ATOMS in a lattice

Our physical systems:
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Systems For Quantum Information
Laser-cooled neutral atoms in lattices

Polarized photons
|Ψ>= c0|H>+c1|V>

|Ψ>= c0|E1>+c1|E2>

E1

E2

U ∝ p•E ∝ Intensity
Standing Wave

K
errλ/2

H

H

V

V

Problem:
Kerr Effect 
is 1010

too small
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CHH

CHV

CVH

CVV

Density Matrices & Superoperators
One photon: H or V.
State: two coefficients 

CH

CV

intensity of horizontal

intensity of vertical

intensity of 45
& RH circular.

Propagator (superoperator ): 4x4 = 16 coefficients.

 

Ψ 

  
Prepare a complete set 
of input density matrices

Make 4 measurements on 
each to extract

i i


Density matrix: 2x2=4 coefficients
o
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|Ψ> = c1|H> |H>+c2eiφ|V>|V>

λ/2 λ/4

λ/2 λ/4

λ/2 λ/4

|Ψ> =c1|H>|H>+c2eiφ2|H>|V>
+c3 eiφ3|V> |H>+c4eiφ4|V>|V>

Process Tomography: Two Photons
• A polarized two-photon state has a 16 element 

We need to make 16 input states and make 16 
measurements for each to measure the superoperator 

• By adjusting the 6 waveplates in the setup below we 
can produce a complete set of input states

White, James, Eberhard
and Kwiat, Phys. Rev.
Lett. 83, 3103 (1999).

→
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Two waveplates per 
photon for state 
analysis

HWP

HWP

HWP

HWP

QWP

QWPQWP

QWP
PBS

PBS

Argon Ion Laser

“Black Box”
Process 

Detector B

Detector A

BBO two-crystal 
downconversion 
source.

Two-photon Process Tomography

Translatable 
Retro-reflector

Two SPDC crystals to
Create HH or VV.

Two waveplates per photon
for state preparation

HWP
QWP

� For each input state we measure H-H, H-V, V-45, 
45-LHS, etc. coincidence rates
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Our Black Box

Our Goal: use process tomography to test this filter.

r

r
t
t+ = 0

The (not-so) simple
50/50 beamsplitter
Codename:  
Bell-state Filter

|Φ+> = |HH> + |VV>
|Φ-> = |HH> – |VV>
|Ψ+> = |HV> + |VH>
|Ψ-> = |HV> – |VH>

Bell - State Coincidence Counts
No (symmetric)
No (symmetric)
No (symmetric)
Yes! (anti-symmetric)

Uses:  Quantum Teleportation, Quantum Repeaters, CNOT
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C
oincidences (per 50 s)

Hong-Ou-Mandel Interference

> 85% visibility 
for HH and VV 
polarizations

HOM acts as a filter 
for the Bell state:

Ψ− = (HV-VH)/√2

Goal: Use Quantum Process Tomography to find the
superoperator which takes ρin → ρout
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Measuring the Superoperator

ρout =

|Ψ> = |H> |V>

3.  Output:

16 analyzer settings

Coincidencences

}

Real Imaginary

1.  Input:

2.  Measurement
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Repeat for 16 Input States
Input

HH

HV

VV

VH

}
}

}
}

etc.

16 analyzer settings

16 
input 
states

Coincidencences Output ρ
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Testing the Superoperator
LL = input state

Predicted

Observed
HWP

HWP

HWP

HWP

QWP

QWPQWP

QWP
PBS

PBS

Argon Ion Laser

"Black Box" 50/50 
Beamsplitter

Detector B

Detector A

BBO two-crystal 
downconversion 
source.

Nphotons = 297 ± 14

Nphotons = 314
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So, How's Our Bell-State Filter?

Out: ≠ Ψ−, but is a different maximally entangled state:

In:  Bell singlet state: Ψ− = (HV-VH)/√2

1/2

1/2

-1/2

-1/2Ψ− = ( )=

Ψ− ≠
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Model of real-world beamsplitter

φ1 φ2

45° “unpolarized” 50/50 
dielectric beamsplitter
at 702 nm (CVI Laser)

birefringent element
+

singlet-state filter
+

birefringent element

Singlet 
filter

AR coating

multi-layer dielectric

Best Fit: φ1 = 0.76 π 
φ2 = 0.80 π
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χ2 = 477   
N-d.f. = 253

Observed

Predicted

+/- 1σ (statistical)

Comparison to Measured Superop. 14



Comparison to Ideal Filter
Measured superoperator,
in Bell-state basis:

A singlet-state filter would have
a single peak, indicating the one
transmitted state.

Superoperator after transformation
to correct polarisation rotations:

Dominated by a single peak;
residuals allow us to estimate
degree of decoherence and
other errors.
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� State reconstruction is performed on a system of cold atoms in 
an optical lattice.

�Black Box�

in out

superoperator of system

�Using various input states Quantum process tomography on 
time dependent sinusoidal potentials is performed. This results 
in a superoperator which completely characterizes the evolution 
of a state in the potential.

Process Tomography with Atoms

 out 
 in

 
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�Rb vapour cell MOT

�108 atoms 

�Cooled to 6 µK

�Load a 1-D optical lattice 
during molasses stage

The System 17



TUI
PBS

PBS PBS

AOM1

AOM2

Amplifier

Grating Stabilized 
Laser

Function 
Generator

Individual control of frequency 
and phase of AOMs allows 
control of lattice velocity and 
position.

Spatial filter

Experimental Setup

Note: optical standing wave is 
in vertical direction

~4 recoil energies

1µm

Tilted due to gravity

λ/2
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Interference of lasers creates a standing wave.  Atoms experience 
an energy shift proportional to the light intensity.  Creates a 
sinousoidally varying potential.

Individual lattice wells can be thought of 
as harmonic oscillators.
More accurate for deeper lattices, but still
a valid approximation for 2 state lattices

In our experiments, we measure the 
motional density operator of the atoms
in our lattice

*energy spacings
*energy state populations
*coherences

 12 11

 12
 1   11

Optical Lattices 19



Initial Lattice
Ground State

After adiabatic decrease

Thermal state

Well 
Depth

t(ms)
0

Preparing a ground state

0

t1 t1+40

t1+40t1

7 ms

2 bound states

1 bound state

Measuring state populations

1st Excited State

Isolated ground state
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Instead of displacing the state, we displace the trap by changing the 
phase of one lattice beam. Φ = 45o 125nm

Displacements and Rotations
To apply rotation and displacement operators,             and   
first wait a time, t to let the state rotate through 

D
  t

Next, perform the displacement, D

Ux  1
2 m2x2

D|0  a|0  b|1  unbound atoms

c0
c1

 a b

b  a

c0
c1

Measured experimentally

Rt
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Measuring 2 State Systems

m  ,  t  a 0 |  e  i t b 1 | a |0   e  i t b |1 

 0|DRtRtD|0  ,t||,t

For a 2 state system, state reconstruction can be performed with
3 measurements by projecting the unknown state,   , onto the set
of known states, : 


|,t

is the displacement operator
is the rotation operator

Acting on the vacuum state, they create a coherent mix of the
ground and excited state:

D
Rt

|,t  a|0  eitb|1  RtD|0
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0.8 |0   i 0.6 |1 E.g., state tomography on 

Measuring 2 State Systems cont’d

 12   12
  12   12



 22

 11

|0
|,t 

  0

0. 9|0  0. 4|1
|,t 

  125nm
t  0

0. 9|0  i0.4|1
|,t 

  125nm
t  /2

m 12  1
2  12  12

   m,t  /2  a2 11  b2 22/2ab

e 12  1
2  12  12

   m,t  0  a2 11  b2 22/2ab

23



Process:   
Sitting in the lattice 
for 1 period.
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QPT of Decoherence 24
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Operation:  Resonantly shake the lattice.

Observed Bloch Sphere Modelled Bloch Sphere from theory
(Harmonic oscillator plus decoherence
from previous measurement)

x
t

QPT of Driving Oscillations 25



x

p
ωt

Wait…

Quantum State Reconstruction

Measure ground
state population

x

p

∆x
x

p

Shift…

∆x
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Step 1 Step 2 Step 3

Q   1
  | | 

Husimi Representation:

Wigner Representation:
WH.O.0,0 
1
 n0

 1nPn

QH.O. (0,0) = Pg

Coherent state

First two terms 
in the Wigner 
Function



Experiment Theory

Husimi Dist. of an Inverted State 27

Creating a mixed inverted state
Step 1:  Resonantly oscillate position of lattice for 3 oscillations

- generates state with Pe =2Pg
Step 2:  Decrease well depth until 2 states are bound
Step 3:  Add a 3ms delay before measurements.

- sample decoheres  (dephasing?)



H

V
HWP QWP

H3 + 
exp[3iφ] 
V3

H3 + V3

HWP

A

A

B

V

Periscope

Ti:sapphire

BBO doubler

BBO PDC

PBS

Partial polarizer
Phase shift

PBS

� We can �mash� together N photons with polarizations distributed
evenly across the Bloch sphere to create |NH0V〉+ |0HNV〉

Current Work: High-Noon States

→ N times more interferometric precision

3-Noon Experimental Setup
λ/N

N
-c

oi
nc

.
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Current Work: Resource Optimal 
DFS Identification

Our process:
Prob =1/2:  Swap ie. |HV〉 → |VH〉
Prob =1/2:  Identity ie. |HV〉 → |HV〉

Decoherence!

29

The Goal:  Find a method that 
determines which states form a
decoherence-free subspace (DFS) 
without knowing the decoherence
mechanism or doing full QPT.0

50/50

H

V



Current Work:  Tailored Error 
Correction for Optical lattices

30

Create 
Pulse sequence State 

Tomography

Learning algorithm

|Create 
Pulse sequence State 

Tomography

Learning algorithm

|

The Goal:  Undo dephasing of states in the lattice

Stage 1:  Phase Imprinting
Apply Pi pulses to 
reverse dephasing
Fast = Bang Bang QEC  
Slow = Spin Echo

Stage 2: Learning Algorithm
� Measure state 
� Use fidelity as a cost function
� Feedback to the lattice through

its phase, intensity and velocity

Raise height and shift lattice to imprint 
a Pi phase on ½ of the ground state  



31Current Work: Nonorthogonal
State Discrimination

3,1BS

1′

2,1BS

4,1BS

4,2BS

4,3BS
3,2BS

3′

1 4′

2′

2
3

4

3,1BS

1′

2,1BS

4,1BS

4,2BS

4,3BS
3,2BS

3′

1 4′

2′

2
3

4

Projective measurements can distinguish these three non-
orthogonal states at most 1/3 of the time:

But a unitary transformation 
in a 4D space produces:

… these states can be distinguished 55% of the time



Summary
PHOTONS

ATOMS

CURRENT WORK

� State Tomography in a 2 bound-state lattice: Coherent 
state, inverted state, Fock State

� Quantum process tomography: Superoperator for 
“natural” decoherence and single qubit rotations

� Quantum process tomography for two polarized photons

� Superoperator for a not so perfect Bell-state filter
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� Tailored error correction for decohering swap operation on 
photons (Optimal QPT measurements)

� Tailored pulse sequences to investigate and undo decoherence in the 
optical lattices (Learning Algorithm)


