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The Goal

* A major goal 1s to experimentally completely
characterize the evolution (and decoherence) 1n a
quantum system in order to tailor error-control to that
particular physical system.

* The tools are "quantum state tomography" and "quantum
process tomography'": full characterisation of the density
matrix or Wigner function, and of the "$uperoperator"
which describes its time-evolution.

* Feedback — for adaptive i1dentification of optimal error
control strategies.

Our physical systems:
Polarized PHOTONS and ATOM S 1n a lattice




Systems For Quantum Information

L aser-cooled neutral atomsin lattices
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Density Matrices & Superoperators

Onephoton: H or V. ¥ —
State: two coefficients Cy

Density matrix: 2x2=4 coefficients

Intensity of horizontal
CHH CVH
CHV CV

Propagator (superoperator €): 4x4 = 16 coefficients.
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Process Tomography: Two Photons

A polarized two-photon state has a 16 element p
— We need to make 16 mput states and make 16
measurements for each to measure the superoperator ¢

By adjusting the 6 waveplates 1n the setup below we
can produce a complete set of input states

|¥> = ¢, |H> |[H>+c e V>|V> |¥> =c,|H>|H>+c,e%?|H>|V>
+C, €'03|V> |H>+c,e' 0% V>| V>
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«*Q White, James, Eberhard
and Kwiat, Phys. Rev.
M2 /4 Lett. 83, 3103 (1999).




Two-photon Process Tomography

 For each input state we measure H-H, H-V, V-45,
45-LHS, etc. coincidence rates
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Our Black Box

The (not-so) simple .. .
50/50 beamsplitter e ) 1; .
Bell-state Filter ) O Q
Bell - State Coincidence Counts
O*>=|HH> + [VV> No (symmetric)
® >=|HH>-|VV> No (symmetric)
Y*+> = |HV> + |[VH> No (symmetric)
¥ >=|HV>—-|VH> Yes! (anti-symmetric)

Uses: Quantum Teleportation, Quantum Repeaters, CNOT

Our Goal: use processtomography to test thisfilter.




Hong-Ou-Mandel Interference
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Goal: Use Quantum Process Tomography to find the
superoperator which takes p,, = Py




M easuring the Superoperator

1. Input: V> = |H> |[V>
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Testing the Superoperator

LL = input state
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So, How's Our Bell-State Filter?

In: Bell singlet state: ¥~ = (HV-VH)/\2
(1/2 -1/2)
Y =\ )" o L

Out: # ¥, but 1s a different maximally entangled state:




Model of real-world beamsplitter

Singlet
<+— multi-layer dielectric /ﬂlter
/ \— AR coating ¢1 ¢2
45° “unpolarized” 50/50 birefringeft element
dielectric beamsplitter : :
-state filt
at 702 nm (CVI Laser) singlet S_tkae e

birefringent element

Best Fit: ¢, =0.76
$,=0.80 T




Comparison to Measured Superop. !

Predicted

2 =477
N-d.f. = 253

+/- 1o (statistical)




Comparison to ldeal Filter

Measured superoperator,  Superoperator after transformation
In Bell-state basis: to correct polarisation rotations:

Dominated by a single peak;
residuals allow usto estimate
degr ee of decoherence and
other errors.

a single peak, indicating the one
transmitted state.




Process Tomography with Atoms

e State reconstruction 1s performed on a system of cold atoms in
an optical lattice.
*Using various input states Quantum process tomography on

time dependent sinusoidal potentials is performed. This results
in a superoperator which completely characterizes the evolution

of a state in the potential.

AN
Pt = € ( P in) € = superoperator of system




The System
*Rb vapour cell MOT

«10% atoms

*Cooled to 6 uK

*Load a 1-D optical lattice

during molasses stage




Experimental Setup

AOM?2

- PBS

Amplifier

Grating Stabilized
Laser

PBS . PBS
Spatial filter

Individual control of frequency

Note: optical standing wave is

in vertical direction
<+« lum —»

~4 recoil energies

Function and phase of AOMs allows
Generator | control of lattice velocity and

position.

Tilted due to gravity




Optical Lattices

Interference of lasers creates a standing wave. Atoms experience
an energy shift proportional to the light intensity. Creates a
sinousoidally varying potential.

Individual lattice wells can be thought of
as harmonic oscillators.

More accurate for deeper lattices, but still
a valid approximation for 2 state lattices

P 1 P 12
* 1 _
P12 P 1
. * .
In our experiments, we measure the Cnergy spacings

motional density operator of the atoms ~ energy state populations
in our lattice *coherences




M easuring state populatlons
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Displacements and Rotations

To apply rotation and displacement operators, R(wt) and D(g)
first wait a time, t to let the state rotate through 0 = wt

22

UX) = 7 mo?X

Next, perform the displacement, D(g)
D|O> ~ a0) + b|1) + unbound atoms

M o]
—b* a C
Measured experlmentally

Instead of displacing the state, we displace the trap by changing the
phase of one lattice beam. O = 45° m==d 125nm




Measuring 2 State Systems

For a 2 state system, state reconstruction can be performed with
3 measurements by projecting the unknown state, p, onto the set
of known states, |®(¢c,wt)) :

M(e,wt) = (a(0] + e "'b(1])p(al0) + e*'®'b|1))

= (0|D'(e)R(wt) pR (01)D(£)|0) = (D (e, wt)|pldD (e, wl))

D(¢) is the displacement operator

R(wt)1is the rotation operator

Acting on the vacuum state, they create a coherent mix of the
ground and excited state:

(e, 01)) = a0) + €'”'b1) = R'(wt)D(e)[0)




Measuring 2 State Systems cont’d
E.g., statetomographyon 0.8]0) + 10.6]1)

D(e,0t)) = (s, t)) = D(s, 0t)) =
0) 0.9]0) + 0.4/1) 0.9|0) +i0.4/1)

‘ p, WM —pntpy -ﬁplz_p?ﬁz

E=0 € = 125nm € = 125nm
ot =0 ot = /2

me(,olz) = %(Plz + ,sz) = (m(S,COt - O) - a2p11 - bzpzz)/(2ab)
Sm(Plz) = %(Plz B p;kz) = (M(e, 0t = 7/2) — a2pll B b2p22)/(2ab)




{ 9
~01 — .02 1

.60

.01 — .02 |
.69
|41 —.010 |
.69

1.010 + .35 |

[]]

QPT of Decoherence

.01 +.02 I} Process: 9
1 Sitting in the lattice L -.o1
O+ 02 '} for 1 period. [ 60
41 jglo I p|n -> pOUt :'052902|
SLEE | 28+.010I
010 - .351 , . — C 69
31 0] ) : 0.+ .26 |
Ha) [\\ AN
g0\ : ]
— i T %950 100 150 200 250 300 350
‘%\\;\:%§\ Time (us)
- Initial Final
Bloch = Bloch .
Sphere Sphere -




QPT of Driving Oscillations

Operation: Resonantly shake the lattice.

Observed Bloch Sphere Modelled Bloch Sphere from theory
(Harmonic oscillator plus decoherence

from previous measurement)




Quantum State Reconstruction
Step 1 P Step 2 P Step 3 P

ol
AX

Wait . Measuregrognd
state population

Husimi Representation:

Qa) = #(alpla)
QH.O. (070) - Pg

Wigner Representation:
Wh.0.(0,0) =

7 2o ("D)"Pr

- +<—Coherent state

First two terms
<— Inthe Wigner
Function




Husimi Dist. of an Inverted State

Creating a mixed inverted state

Step 1: Resonantly oscillate position of lattice for 3 oscillations
- generates state with P, =2P,

Step 2: Decrease well depth until 2 states are bound

Step 3: Add a 3ms delay before measurements.
- sample decoheres (dephasing?)

0.35
0.3
0.25
0.24
0.157
0.1+
0.05 4




Current Work: High-Noon States

* We can “mash” together N photons with polarizations distributed
evenly across the Bloch sphere to create [N0y,)+ |0 Ny,

— N times more interferometric precision

N-coinc.

3-Noon Experimental Setup
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Current Work: Resource Optimal
DFS I dentification

Our process:
Prob =1/2: Swap 1ie. |[HV) — |VH)
Prob =1/2: Identity ie. [ HV) — |HV) N\
Decoherence!
50/50
The Goal: Find a method that /

determineswhich statesform a
decoher ence-free subspace (DFYS)
without knowing the decoher ence
mechanism or doing full QPT.0




Current Work: Tailored Error

Correction for Optical lattices
The Goal: Undo dephasing of statesin thelattice

Stage 1. Phase Imprinting
Apply P1 pulses to

reverse dephasing

Fast = Bang Bang QEC
Slow = Spin Echo

Stage 2: Learning Algorithm

* Measure state

 Use fidelity as a cost function

 Feedback to the lattice through
its phase, intensity and velocity

Raise height and shift lattice to imprint
a P1 phase on 'z of the ground state

Create ‘LP>

Pulse sequence

g

State

Tomography

N

Learning algorithm

Y




Current Work: Nonorthogonal
State Discrimination

Pr o] ective measur ements can distinguish these three non-
orthogonal states at most 1/3 of the time;
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Summary

PHOTONS
« Quantum process tomography for two polarized photons

» Superoperator for anot so perfect Bell-state filter

ATOMS

» State Tomography in-a 2 bound-state lattice: Coherent
state, inverted state, Fock State

« Quantum process tomography: Superoperator for
“natural” decoherence and single qubit rotations

CURRENT WORK

» Tailored error correction for decohering swap oper ation on
photons (Optimal QPT measurements)

 Tailored pulse sequencesto investigate and undo decoherencein the
optical lattices (L earning Algorithm)




