Nonlinear Optics at the Quantum Level via Two-Photon Interference

Kevin Resch, <u>Jeff Lundeen</u>, and Aephraim Steinberg University of Toronto, Dept. of Physics

Financial Support from NSERC, CFI, Photonics Research Ontario and the Walter C. Sumner Found.

Outline

- Can we see strong conditional dynamics between free photons?
- Is 100% efficient upconversion possible at the quantum level?
- Experimental Realization and Results.
- What aspects of this effective nonlinearity need a quantum description?

Consider...

Spontaneous Parametric Downconversion

• A pump photon is spontaneously converted into two lower frequency photons in a material with a nonzero $\chi^{(2)}$

Momentum is conserved..

Which-Path Information

The Feynman Paths

The Switch

•Phase chosen so that coincidences are eliminated

Type II Downconversion

Experimental Setup

Suppression and Enhancement of Coincidence Counts

Intensity Modulations: The Switch

Intensity Modulations: Classical or Quantum?

.: Observed by Homodyne

Intensity Modulations: Classical or Quantum?

Upconversion of Photon-Pairs

Summary

- We have demonstrated a quantum interference effect which is an effective nonlinearity at the single-photon level.
- Pairs of photons can be removed from independent laser beams.
- These conditional dynamics might be useful for quantum gates.
- A conditional phase-shift may be possible: Controlled phase gate?