Photon generation and storage

Generation

Jeff Lundeen¹, Hendrik B. Coldenstrodt-Ronge¹, Kenny L. Pregnell², Alvaro Feito², Brian J. Smith¹, Jens Eisert², Martin Plenio², and **Ian A. Walmsley**¹

Storage

Virginia Lorenz¹, Joshua Nunn¹, Felix Waldermann¹, Zhongyang Wang¹, Karl Surmacz¹, Ka Lee¹, Dieter Jaksch¹, Andrew Shields (Toshiba), David Ritchie³, Christine Nicolle³

A store with the stor

Clarendon Laboratory, University of Oxford
 Institute for Mathematical Sciences, Imperial College
 Cavendish Laboratoratory, Cambridge

LIRA

AST

Photon Generation

- 1. The Goal: CV Entanglement Distillation
- 2. Generation of pure single photons
- 3. Measurement of CV Entanglement

- 4. A scheme for a broadband quantum memory
- 5. Three candidate material systems

Entanglement Distillation

• Use the electric field quadratures X and P as resources for quantum information.

- Two-mode squeezed states are entangled states.
- Entanglement degrades when distributed over channels.
- Create one pair with a high degree of entanglement by combining many degraded pairs: Entanglement

Distillation.

Distillation is impossible with Gaussian states

• No distillation of Gaussian states is possible by Gaussian operations! (i.e. linear optics + squeezing) (Eisert, et al. 2002, PRL89(13), 137903)

BS

APD

• Non-Gaussian operation e.g. Photon subtraction

• After de-Gaussifying once, Gaussian operations are sufficient for distillation

(Eisert et al. 2004, Ann. of Phys. 311, 431-458)

Distillation Scheme

• Start with ensemble of entangled modes and extract smaller number of modes with higher degree of entanglement

• Iterative scheme – assuming starting with de-Gaussified states (Browne et al. 2003, PRA 67, 062320)

AST

Photon Generation

1. The Goal: CV Entanglement Distillation

2. Generation of pure single photons

3. Measurement of CV Entanglement

- 4. A scheme for a broadband quantum memory
- 5. Three candidate material systems

• Timing and frequency jitter is the main source of error in optical quantum computer gates.

Pulsed squeezing

• Spontaneous parametric downconversion produces a two-mode vacuum squeezed state:

• Frequency correlations in the two-photon state indicate there are many squeezed states being produced simultaneously in the crystal.

Phys. Rev. A 73, 063819 (2006): Wasilewski et al.

Future sources of pure photons

• Microstructured nonlinear sources allow us to directly engineer the spectral properties of the photons.

• We have modelled spontaneous pair generation in photonic crystal fibers

AST

Photon Generation

- 1. The Goal: CV Entanglement Distillation
- 2. Generation of pure single photons
- 3. Measurement of CV Entanglement

- 4. A scheme for a broadband quantum memory
- 5. Three candidate material systems

Need to know results and probe states to obtain POVMs

Fiber-assisted detection with photon number resolution, D. Achilles, et al., Optics Letters, 28, 2387-2389 (2003).

- We are measuring in the photon number space of a mode
- Suitable probe states are coherent states need a spanning set

State Reconstruction

AST

• With the previous photon-number detector only diagonal elements of the state density matrix determined

- Add a **weak coherent phase** reference
- Regular homodyning: $|\alpha\rangle\langle\alpha|$
- Our detector: Variable from $|n\rangle\langle n$ towards $|\alpha\rangle\langle\alpha|$
- More general measurement: Entanglement witnesses, bounds, etc.

Wallentowitz and W. Vogel, 53, 4528 PRA (1996).

- 1. Source: Pure photon downconversion extended to the large pump regime.
- 2. Operations: Implemented in fibers with single photon detectors
- 3. Entanglement Measurement: Weak Homodyne photon-number resolving detectors State reconstruction or Entanglement Witness

AST

Photon Generation

- 1. The Goal: CV Entanglement Distillation
- 2. Generation of pure single photons
- 3. Measurement of CV Entanglement

- 4. A scheme for a broadband quantum memory
- 5. Three candidate material systems

The Perfect Quantum Memory

- Requirements
 - Strong absorption
 - High fidelity
 - Unitary storage
 - High clock rates: ultrashort pulses/Broad-band photons
 - Long storage time
 - Room temperature operation

Theory: Memory Readin

- Optimize absorption
 - Propagation of signal photon through cell
 - Optimize control to maximize absorption

J. Nunn et al., Phys. Rev. A 75, 011401 (2007).

K. Surmacz et al., submitted.

AST

Photon Generation

- 1. The Goal: CV Entanglement Distillation
- 2. Generation of pure single photons
- 3. Measurement of CV Entanglement

- 4. A scheme for a broadband quantum memory
- 5. Three candidate material systems

Candidate System #1 Raman in Cesium Vapor

- Room temperature operation
 T ~ 300 K
- Strong absorption
 - Optical depth d ~ 10^3
- Broadband photons
 - Cesium clock transition v ~ 9GHz → sub-nanosecond pulses
- Long storage time
 - Dark state lifetime τ ~ few μ s

- High temperature, high pressure diamond*
- Raman scatter: two photons, one phonon

- Stokes photon heralds phonon
- High Stokes shift of 1332 cm⁻¹ (165 meV or 40 THz), thus optical phonon modes depopulated at room temperature
- Fast phonon decay, but large bandwidth $\Gamma \tau \sim 300$ Proof of principle solid state quantum memory

*In collaboration with Paolo Olivero and Steven Prawer, School of Physics, University of Melbourne

Candidate System #2 Phonon Lifetime

Interference between subsequent spontaneous stokes pulses

Candidate System #3 Quantum Dots

- Semiconductor quantum dots (QDs)
 - Charged quantum dots in external magnetic field
 - Large dipole moment
 - high density sample growth possible
 - long dephasing time
 - but strong inhomogeneous dispersion of resonances

*F. Waldermann *et al.*, in press, Diam. and Relat. Mater. (2007). http://dx.doi.org/10.1016/j.diamond.2007.09.009

Candidate System #3 Quantum dots

- Ensemble of negatively charged InAs quantum dots
- Voigt configuration (**B** field perpendicular to sample growth)
- Selection rules allow population transfer from conduction band spin states

- Large Zeeman splitting \rightarrow broadband possible
- Considering waveguides and cavities to increase interaction strength
 Andrew Shields (Toshiba)

David Ritchie (Cambridge) Christine Nicolle (Cambridge)

Conclusion

- We are developing the tools to do entanglement distillation
 - Two-mode squeezed source
 - State reconstruction
- We are developing a broadband quantum memory
 - Theoretically optimized readin/out
 - Prelimary investigation of three candidate systems