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Entanglement Distillation

• Use the electric field quadratures X and P as resources 
for quantum information.

• Two-mode squeezed states are entangled states.

• Entanglement degrades when distributed over channels.

• Create one pair with a high degree of entanglement 
by combining many degraded pairs: Entanglement 
Distillation.



Spontaneous Parametric 
Downconversion
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• The produced entangled state has a Gaussian Wigner function



Distillation is impossible with 
Gaussian states

• Non-Gaussian operation e.g. Photon subtraction

• After de-Gaussifying once, Gaussian operations are sufficient 
for distillation
(Eisert et al. 2004, Ann. of Phys. 311, 431-458)

• No distillation of Gaussian states is possible by Gaussian 
operations! (i.e. linear optics + squeezing)
(Eisert, et al. 2002, PRL89(13), 137903)



Distillation Scheme

• Start with ensemble of entangled modes and extract
smaller number of modes with higher degree of entanglement

• Iterative scheme – assuming starting with de-Gaussified states
(Browne et al. 2003, PRA 67, 062320)

Successful distillation in case of
vacuum detection in both detectors

X X
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Heralded Single-Photons
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• Photonic quantum-
computing requires 
high-quality heralded 
photons

A Quantum Gate

A click at this detector indicates 
(“heralds”) there is a photon in 
this beam.



The Problem: Timing Jitter

Time difference
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• Timing and frequency jitter is the main source of error in optical 
quantum computer gates.



Design a better photon source

Typical Source Our Source

Typical Ours

No frequency or 
timing jitter

No trade-off 
between 
efficiency and 
quality

Photon Pair Joint Spectrum
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How good are our photons?
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Theory Experiment

Quality > 98%

The Quality Test

• Heralding efficiency up to 44%
• Four-photon count rates as 
good as the best sources but 
with 1/10 the pump power.
• High quality interference with 
no filters

Peter Mosley, et al., 
arXiv:0711.1054v1 [quant-ph] Nov 2007



Pulsed squeezing
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• Spontaneous parametric downconversion produces a two-mode 
vacuum squeezed state:

• Frequency correlations in the two-photon state indicate there are many 
squeezed states being produced simultaneously in the crystal.

= …++ +

squeezed state #1 squeezed state #2 squeezed state #3

Phys. Rev. A 73, 063819 (2006): Wasilewski et al.



Future sources of pure photons

• Microstructured nonlinear sources allow us to directly engineer 
the spectral properties of the photons.

• We have modelled spontaneous pair generation in photonic 
crystal fibers

Optics Express, Vol. 15, Issue 22, pp. 14870-14886
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Detector Tomography
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Measurement
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IN CHANNEL DETECTOR
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RESULTS

� Need to know results and probe states to obtain POVMs

( ) ]ˆˆ[ βρβ Π=Ρ Tr

� Complete characterization of quantum measurement apparatus

� We need to characterize our detectors before we can 
characterize our states



Detectors

� Time multiplexed photon-
number detector

� We are measuring in the photon number space of a mode

� Suitable probe states are coherent states – need a spanning set

Fiber-assisted detection with photon number resolution, 
D. Achilles, et al., Optics Letters, 28, 2387-2389 (2003).

� Detector Tomography Test Bed

|α〉



Tomography Results

With Loss (47%)

Without Loss

Cross-section of POVM Wigner Function
0 clicks 1 clicks 2 clicks
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• No phase sensitivity
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State Reconstruction

• With the previous photon-number 
detector only diagonal elements of
the state density matrix determined

• Add a weak coherent phase
reference

• Regular homodyning: |α〉〈α|

• Our detector: Variable from |n〉〈n|
towards |α〉〈α|

• More general measurement:
Entanglement witnesses, bounds, 
etc.
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Wallentowitz and W. Vogel, 53, 4528 PRA (1996).



Joint Photon Number Statistics

Joint photon statistics for characterisation of two dependent modes

In parametric downconversion Two coherent states 
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The Experiment

1. Source: Pure photon downconversion extended to the large pump regime.
2. Operations: Implemented in fibers with single photon detectors
3. Entanglement Measurement: Weak Homodyne photon-number resolving 

detectors – State reconstruction or Entanglement Witness

1

1

2

2

3

3



Outline

Photon Generation

1. The Goal: CV Entanglement Distillation

2. Generation of pure single photons

3. Measurement of CV Entanglement

Photon Storage

4. A scheme for a broadband quantum 
memory

5. Three candidate material systems 



Why a quantum memory?

• Deterministic single photon source

• Long-distance transmission of quantum states: 
quantum repeaters

• Local operations, e.g. 2-qubit gates



The Perfect Quantum Memory

• Requirements
– Strong absorption

– High fidelity
– Unitary storage

– High clock rates: ultrashort
pulses/Broad-band photons

– Long storage time

– Room temperature operation



Raman Scheme

• Off-resonant Raman transition
– Broadband
– Tunable

– Robust

• Steps:
Initialize Readin Readout

J. Nunn et al., Phys. Rev. A 75, 011401 (2007).

= Signal = Control Pulse



Theory: Memory Readin

L

ensemble

J. Nunn et al., Phys. Rev. A 75, 011401 (2007).

Signal 

Control

• Optimize absorption
– Propagation of signal 

photon through cell
– Optimize control to 

maximize absorption



Theory: Memory Readout

• Forward Readout is not mode-matched

• Use backward readout instead
• Choose different level configuration:
• Angle control field

– Readin

– Readout

• Phasematched!
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K. Surmacz et al., submitted.
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Candidate System #1
Raman in Cesium Vapor

• Room temperature operation
– T ~ 300 K

• Strong absorption
– Optical depth d ~ 103

• Broadband photons
– Cesium clock transition ν ~ 9GHz � sub-nanosecond 

pulses

• Long storage time
– Dark state lifetime τ ~ few µs



Candidate System #1
Experimental Setup

Ti:sapph laser
300ps, 80MHz, 852nm
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Candidate System #2
Raman in Diamond

• High temperature, high pressure diamond*
• Raman scatter: two photons, one phonon

• Stokes photon heralds phonon
• High Stokes shift of 1332 cm–1 (165 meV or 40 THz), thus 

optical phonon modes depopulated at room temperature
• Fast phonon decay, but large bandwidth Γ τ ~ 300

Proof of principle solid state quantum memory

*In collaboration with Paolo Olivero and Steven Prawer, School of 
Physics, University of Melbourne

Pump photon
e.g. 800 nm

Stokes photon
895 nm 

zone centre 
optical phonon = storage excitation



Candidate System #2
Phonon Lifetime
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• Visibility decays with τ as 

phonon decoheres
• Measured decoherence

time: 6.8 ps
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Interference between subsequent spontaneous stokes pulses

F. Waldermann et al., in preparation.



Candidate System #3
Quantum Dots

• Semiconductor quantum dots (QDs) 
– Charged quantum dots in external magnetic 

field
– Large dipole moment
– high density sample growth possible
– long dephasing time
– but strong inhomogeneous dispersion of 

resonances

*F. Waldermann et al., in press, Diam. and Relat. Mater. (2007). 
http://dx.doi.org/10.1016/j.diamond.2007.09.009



Candidate System #3
Quantum dots

• Ensemble of negatively charged InAs quantum dots
• Voigt configuration (B field perpendicular to sample 

growth)
• Selection rules allow population transfer from conduction 

band spin states

• Large Zeeman splitting � broadband possible
• Considering waveguides and cavities to increase 

interaction strength
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Conclusion

• We are developing the tools to do 
entanglement distillation
– Two-mode squeezed source
– State reconstruction

• We are developing a broadband 
quantum memory
– Theoretically optimized readin/out
– Prelimary investigation of three candidate 

systems


