Nonlinear Optics With Less Than One Photon

Motivation

- A nonlinear response between two photons is required for quantum information processing with light (a controlled-not gate).
- To build an all-optical switch for single photons.
- Develop understanding of *quantum* nonlinear optics.

Experimental Setup

Kevin Resch, Jeff Lundeen, and Aephraim Steinberg University of Toronto, Dept. of Physics, Toronto, Canada

Financial Support from Photonics Research Ontario, NSERC, CFI, and the Walter C. Sumner Found.

The Concept

• Can we see interference if we pass a laser through the back of a down-conversion crystal?

• No, interference is impossible because the other down-converted photon gives which-path information.

• Yes, interference is possible. There are two indistinguishable Feynman paths that lead to a pair of photons. Either the pair comes from downconversion or from the pair of lasers.

Suppression and Enhancement of Photon Pairs

Intensity Modulations: A photon switch

Summary

• We have demonstrated a quantum interference effect which is an effective nonlinearity at the singlephoton level.

• The effect is approximately 10 billion times stronger than conventional SHG.

• Pairs of photons can be removed from independent laser beams.

• A single-photon switch was demonstrated by observing a change in the intensity of the beams.