Nonlinear Optics With Less Than One Photon

Kevin Resch, Jeff Lundeen, and Aephraim Steinberg
University of Toronto, Dept. of Physics
PQE XXXI

Financial Support from NSERC, CFI, Photonics Research Ontario and the Walter C. Sumner Found.
Outline

• Can a nonlinear effect be observed between two photons?

• Is 100% efficient upconversion possible at the quantum level?

• Can we make a two-photon optical switch?

• Suppression and enhancement of spontaneous down-conversion by quantum interference.

• Experimental setup and Results.
Spontaneous Parametric Downconversion

Downconversion

Momentum is conserved..

Pump

\(s \)

\(i \)

- A pump photon is spontaneously converted into two lower frequency photons in a material with a nonzero \(\chi^{(2)} \)

\(k_s \)

\(k_i \)

\(k_{PUMP} \)

..as well as energy

\(\omega_{PUMP} \)

\(\omega_s \)

\(\omega_i \)

\(\varphi_{PUMP} = \varphi_s + \varphi_i \)
Consider...

Spontaneous Parametric Down-conversion

Time-Reversed

- 100% efficient upconversion
Which-Path Information

\[\phi_{\text{PUMP}} \]

\[\omega \]

\[\phi_{\text{LO}} \]

\[2\omega \]

Intensity

\[\phi_{\text{PUMP}} - \phi_{\text{LO}} \]
The Feynman Paths

\[\phi_{\text{PUMP}} + 2 \times \phi_{\text{LO}} = P_{\text{COINC}} \approx \cos^2(\Delta \phi) \]
The Switch

•Phase chosen so that coincidences are eliminated
Type II Downconversion

Downconverted Photon Pair

Pump Photon

ϕ_{PUMP}

2ω

H

V

ω

P_{COINC}

$2 \times \phi_{\text{LO}}$

H

V

ϕ_{PUMP}
Experimental Setup

Mode-locked Ti:Sa

Delay

ND

\(\lambda/2 \) Pol.

SHG

DC

IF

PBS

Spatial Filter

Det. A

Det. B
Suppression and Enhancement of Coincidence Counts

Visibility = 48%
(57% background corrected)
Intensity Modulations: The Switch

Both LO’s blocked

Both LO’s unblocked

Vertical LO blocked

Horizontal LO blocked
Upconversion of Photon-Pairs

Coincidence Counts (/30s)

Total Coinc.

Down-conversion

Local Oscillators

15.7% Upconversion

Delay Time (fs)
We have demonstrated a quantum interference effect which is an effective nonlinearity at the single-photon level.

Pairs of photons can be removed from independent laser beams.

A single-photon switch was demonstrated by observing a change in the intensity of the beams.

A conditional phase-shift may be possible: Controlled phase gate?