Applications of a nonlinear photon switch to Hardy’s Paradox and Bell-state determination

Jeff Lundeen, Kevin Resch and Aephraim Steinberg
University of Toronto, Dept. of Physics
PQE XXXV

Financial Support from NSERC, CFI, and Photonics Research Ontario, DARPA QuIST
Can we construct a two-photon gate?

Photons do not naturally interact: Great for transmission. Not so great for calculation.

Proposed Solutions:

- **Better materials by a factor of 10^{10}**
 Absorptive nonlinearities (Franson), Resonance in Micro-structures (Gaeta, Walmsley)

- **Cavity Quantum Electrodynamics**
 Haroche, Kimble, Walther, Rempe

- **EIT**
 Harris, Scully, Lukin, Fleishhauer, Hau

- **Measurement-induced nonlinearities**
 Knill, Laflamme, Milburn, Franson, White, Zeilinger

- **Interference-enhanced nonlinearities**
 Exchange effects in atomic clouds (Franson), $\chi^{(2)}$ with interference (Steinberg)
Spontaneous Parametric Downconversion

- A pump photon is spontaneously converted into two lower frequency photons in a material with a nonzero $\chi^{(2)}$.

Momentum is conserved as well as energy:

$\mathbf{k}_s + \mathbf{k}_i = \mathbf{k}_{\text{PUMP}}$

$\omega_p = \omega_s + \omega_i$

$\phi_{\text{PUMP}} = \phi_s + \phi_i$
The Switch

The Absorptive Gate

- Phase chosen so that all photon pairs are “absorbed” into the pump beam

- On average < 1 photon per pulse
- One photon controls the transmission of the other beam
- The blue pump beam acts as a catalyst increasing SHG by a factor of 10^{10}
The Phase Gate

- Set two-photon amplitudes so that they add up to give a phase-shifted output

\[
\begin{align*}
\alpha |00\rangle + \beta |10\rangle + \gamma |01\rangle + d |11\rangle \\
\alpha |00\rangle + \beta |10\rangle + \gamma |01\rangle + de^{ip/3} |11\rangle
\end{align*}
\]

Measurement of Phase-shift

- Turn one of the input beams into a Mach-Zehnder and insert gate in one arm.
Interference Fringes with and without Post-selection

![Graph showing interference fringes with and without post-selection. The graph plots coincidence counts against delay (fs) with error bars and includes quantum states |10⟩ and |11⟩.](image-url)
Variable Phase-Shifts

[Graph showing phase shifts versus pump phase shift with error bars]
Caveats

• Typically, optical quantum computing uses single photons

• Single-photons do not have a well defined phase

• Both the absorptive gate and the phase gate rely on interference and hence require input beams with a well defined phase

• In practice: Input beams = weak coherent states or SPDC beams

• Concept: We can’t know in advance whether the input beams contain a photon or not
Bell-state Analyzer

• Impossible to measure all four Bell-states with linear-optics

• Converts each Bell-state to a different basis state (i.e. |?\rangle \tau |HH\rangle)

• Insert interference-based phase-gate in place of CPHASE

• Works for Dense-Coding (send 2 bits with one photon)

• Doesn’t work for Teleportation

Interaction-Free Measurement

Bomb Absent:
Only detector C fires

Bomb Present:

<table>
<thead>
<tr>
<th>Detector</th>
<th>Prob.</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>$\frac{1}{4}$</td>
<td>None</td>
</tr>
<tr>
<td>D</td>
<td>$\frac{1}{4}$</td>
<td>Present</td>
</tr>
<tr>
<td>Neither</td>
<td>$\frac{1}{2}$</td>
<td>Bang</td>
</tr>
</tbody>
</table>
Hardy’s Paradox

• Can we talk about the past in postselected QM?
• How should we interpret indirect quantum measurements?

### Outcome	Prob
$D_+ \text{ and } C_-$ | $1/16$
$D_- \text{ and } C_+$ | $1/16$
$C_+ \text{ and } C_-$ | $9/16$
$D_+ \text{ and } D_-$ | $1/16$
Explosion | $4/16$
Experimental Setup
Experimental Data

Switch: Vis=85.4%

Horizontal Pol. Mach-Zehnder: Vis=95.7%

Vertical Pol. Mach-Zehnder: Vis=97.4%
Experimental Data

<table>
<thead>
<tr>
<th>Testing IFM+</th>
<th>If D+ clicks ⇒</th>
<th>Photon is in arm I-</th>
<th>96%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Photon is in arm O-</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing IFM-</th>
<th>If D- clicks ⇒</th>
<th>Photon is in arm I+</th>
<th>97%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Photon is in arm O+</td>
<td>3%</td>
</tr>
</tbody>
</table>

| Testing Switch | Rate of photon pairs in I+ and I- = 10.4 ± 0.33/5s |

| The Paradox | Rate of D+ and D- coincidences = 7.28 ± 0.41/5s |
Weak Measurements

Aharonov, Albert, & Vaidman, PRL 60, 1351 ('88)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Pointer Position Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>Dirac Delta</td>
</tr>
<tr>
<td>Real</td>
<td>Width << Change in Position</td>
</tr>
<tr>
<td>Weak</td>
<td>Width >> Change in Position</td>
</tr>
</tbody>
</table>

Average position of pointer:

\[
\text{Pointer}(X) = \exp[-(X - gA_W)^2 / \Delta X]
\]

\[
A_W = \frac{\langle \phi | A | \psi \rangle}{\langle \phi | \psi \rangle}
\]

Average position of pointer:

\[
\frac{E}{4} \quad \frac{1}{2} \quad \frac{3}{4} \quad F
\]

\[\Delta X \Delta P \geq \frac{\hbar}{2\pi}\]

⇒ small disturbance

⇒ little system – pointer entanglement

⇒ simultaneous measurement of different weak values

⇒ useful for investigating post-selected systems: Hardy's Paradox
Weak Measurements in Hardy’s Paradox
Resch & Steinberg, PRL 92, 130402 (2004)

# In Arm	N(I⁻)	N(O⁻)
N(I⁺) | 0 | 1
N(O⁺) | 1 | -1

1 0
Conclusions

• Interference-enhanced $\chi^{(2)}$ nonlinearities can be used to make absorptive and phase gates

• The phase-gate can be used to make a Bell-state analyzer useful for Dense-coding

• A single-photon level switch allows photons to annihilate each other with a high efficiency in Hardy’s Paradox

• We are now experimenting with weak measurements in Hardy’s Paradox.