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Abstract: Single Photon Detectors are integral to quantum optics and
quantum information. Superconducting Nanowire based detectors exhibit
new levels of performance, but have no accepted quantum optical model that
is valid for multiple input photons. By performing Detector Tomography,
we improve the recently proposed model [M.K. Akhlaghi and A.H. Majedi,
IEEE Trans. Appl. Supercond. 19, 361 (2009)] and also investigate the
manner in which these detectors respond nonlinearly to light, a valuable
feature for some applications. We develop a device independent model for
Single Photon Detectors that incorporates this nonlinearity.
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1. Introduction

Single Photon Detectors (SPD) have been central to our exploration of the fundamental limits of
imaging [1], interferometry [2], and communication [3]. They are used in astronomy [4], laser
ranging [5], and biological imaging [6]. The SPD is a building block from which most more
complicated optical detectors can be built. As examples, a photon number resolving detector
can be built by multiplexing many SPDs [7], a phase sensitive detector by mixing the input light
with an auxiliary laser beam [8], and an entanglement (i.e. Bell-state) detector by coincidence
counting between SPDs behind a polarizing beamsplitter [9]. Consequently, SPDs have been
ubiquitous in quantum optics and quantum information experiments performed up to this day.

Throughout, they have been described by a simple model. SPDs are binary detectors (‘Click’,
or ‘No Click’), and thus any non-zero number of detected photons will result in the same re-
sponse: a Click. This behaviour, first directly tested in Ref. [10], is now contained within the
standard model for the SPD’s positive operator- valued measure (POVM):

πSPD
0 =

∞

∑
n=0

(1−P1)
n | n〉〈n |, (1)

where πSPD
0 is the No Click operator, P1 is the quantum efficiency, | n〉 is an n-photon state, and

the Click operator is πSPD
1 = 1−πSPD

0 . This simple model neglects the optical or electrical non-
linearities that likely exist, to some degree, in all SPDs. Nonlinear quantum optical detectors
can prepare novel quantum optical states [11, 12], characterize the photon statistics of input
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states [7], and measure the temporal profile of optical wavepackets through intensity autocor-
relation [13]. Advanced SPDs, with their sophisticated structures [14], are good candidates to
violate Eq. (1) through non-independent photoemissions and/or nonlinear gain mechanism.

A good example is Superconducting Nanowire SPDs (SNSPD), which, compared to conven-
tional SPDs, offer higher maximum count rate, lower timing jitter, broader spectral range, and
superior detection efficiencies at telecom wavelengths [14]. However, disadvantages include
cryogenic operation and no intrinsic photon number resolution. These detectors consist of a
meandering superconducting nanowire carrying a constant bias current close to their critical
current. A single photon deposits enough heat to create a non-superconducting hotspot that
diverts the bias current around it. The increased current density on either side of the hotspot
can then exceed the critical current density. With a probability dependent on the bias and the
photon wavelength, this then initiates a resistive bridge across the nanowire. The probability
can approach 100% for a high quality detector operated at sufficiently high bias current and
excited with photons with small enough wavelengths. The flow of bias current through the re-
sistive bridge results in a voltage spike that signals the detection of a single photon [15, 16].
Unfortunately, apart from such descriptions and related calculations, there is no associated full
quantum optical model (i.e. valid for multiple incident photons) from which we could formulate
a general POVM for a single element SNSPD.

In an attempt to quantitatively describe the different observed experimental results within a
single formalism, Akhlaghi and Majedi [17] proposed a semi-empirical model (AM model). In
this model, the absorption of two or more photons at one point in the wire could result in coop-
erative resistive bridge formation. Hence, one might expect a nonlinear response in SNSPDs.
Moreover, it might dominate the linear response at low bias currents. This is in agreement with
the early experimental results on characterization of SNSPDs [18]. The model has been shown
to work well with input light in a coherent state.

To further test this model we perform tomography on a SNSPD. Detector Tomography [19,
20] is an agnostic procedure to determine the POVM of a detector. The detector is treated as
a Black Box in that we do not need to know its mechanism or make ancillary assumptions
about it. Just recently demonstrated in principle, Detector Tomography has yet to be applied to
a detector without an accepted model for its POVM.

2. Detector tomography

To perform tomography we create a coherent state with a 1310nm laser that produces 200 ps
pulses at 100 kHz. We use a programmable attenuator to set the coherent state amplitude, α .
We sequentially send RT = 105 copies of this state into the SNSPD system and record the
number of detector Clicks, R1. This is repeated for a set of D states {| αi〉}, increasing α from
α0 = 0 until the detector response is unchanging at αD. i.e. ∂R1/∂α = 0. The estimated Click
probability, R1/RT , is equal to the Q-function of the Click POVM operator, Q(α). This, in
itself, completely characterizes the detector response.

Our SNSPD consists of 4 nm thick by 120 nm wide Niobium Nitride meandering wire on
sapphire. The active area is square with a fill factor of 60%. The SNSPD is coupled to an optical
fiber and cooled down to 4.2K by exploiting a cryogenic setup (described in [21]). Fig. 1(a)
shows a schematic of the measurement setup. A constant bias current is applied using a bias-
Tee. The weak response of the SNSPD after amplification is split between an oscilloscope and
a counter (see [22] for more detail). Although the detector is operating continuously, we use a
20ns counting gate, triggered by the laser, to reduce the dark count contribution from the times
between input pulses.

We perform Detector Tomography (i.e. measure Q-function) at three bias currents, 25, 20,
and 16μA. In Fig. 1(b), we plot the measured response for each of these (blue circles). We
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Fig. 1. (a) Schematics of the experimental setup. (b) Click Probability at different bias cur-
rents. The critical current was measured to be 26.0±0.5μA. The blue circles are measured
Click probabilities (not all points are shown). The red lines are calculated using the linear
model in Eq. (1) by calculating the efficiency parameter P1 when the click probability is
equal to 0.1. P1 equals 2.44e-3, 7.3e-5, 4.87e-6 for 25, 20, and 16μA, respectively. The
black dotted lines are from the nonlinear SPD Model in Eq. (5). {Pn} equals {7.30e-4,
2.49e-3}, {9.72e-6, 7.15e-5, 8.14e-9}, {0, 7.33e-8, 2.87e-10, 2.81e-14} for 25, 20, and
16μA, respectively. Zero values indicate they change the minimum of Eq. (6) by less than
1%.

expect a standard linear SPD response at 25μA since this is the normal operation mode. Using

Eq. (1), one expects a Q-function of the form Q(α) = 1 − exp
(
−P1|α|2

)
. We estimate P1

using a single data point at Q(α) = R1/RT = 0.1. Indeed, using this P1, the resulting predicted
response (red line) agrees well with the measured response. Repeating this analysis for 20
and 16μA, we find that the estimated P1s, and thus, quantum efficiencies decrease as the bias
current decreases. More significantly, the disagreement between the shape of the predicted and
measured Click Probability distributions is substantial. Evidently, a SNSPD quickly becomes
nonlinear as the bias current is lowered.

A general limitation of Q-functions is that they cannot be used to calculate a detector’s re-
sponse to arbitrary states of light [23]. Instead, one typically uses the POVM operators repre-
sented in the photon number basis. We find the SNSPD POVM by fitting it to the D measured
statistics R1/RT according to the methods given in [24]. Since the detector lacks phase sensi-
tivity, the off-diagonal elements of the Click operator are zero. We thus represent it as a vector
Π (with dimensions N ×1). We truncate Π at a number state N −1 that is sufficiently high that
Π(N)≈ 1.

One difference with [24] is that these particular SNSPDs have low system quantum efficiency
(0.2% or less at 1310nm) and thus the maximum photon number, N −1, required to span their
response was large. Instead of using large matrices in the fitting, we scaled the inputs {| αi〉}
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Fig. 2. (a) The Q-function (i.e. click probability for coherent state inputs) of the scaled
detector at different bias currents. The scaling factor (k) equals 0.025, 0.0015, 0.00037 for
25, 20, and 16μA, respectively. The raw scaled data (black circles) agrees well with the
tomographic POVM (blue line) and the AM Model (red dashed line). (b) The correspond-
ing Click POVM operator. The operator found from tomography (blue circles) disagrees
with that from the AM Model (red dashed line) but agrees with that from the nonlinear
SPD Model (black dotted line). In the latter, {Pn} equals {7.29e-4, 9.95e-2}, {1.08e-5,
4.76e-2, 3.74e-3, 1.13e-4}, {0, 1.97e-4, 2.01e-3, 4.87e-4, 5.07e-5} for 25, 20, and 16μA,
respectively. Zero values indicate they change the minimum of Eq. (6) by less than 1%.

by a factor k � 1. For each bias current, k is chosen so that the Click Probability is 95% at an
average photon number 〈n〉= 30. This scaled data is shown in Fig. 2(a) (black circles). We plot
Π determined from it in Fig. 2(b) (blue circles). Using this Π, in Fig. 2(a) (blue line) we plot the
predicted detector response to coherent input states. This fits the scaled data well, confirming
the fitting procedure.

If scaled by too large a factor the POVM will, at the very least, be unrepresentative of the
detector and, at worst, be physically impossible. Thus we test the estimated POVM for validity
by adding k loss back into the POVM (i.e. Πunscaled = L−1Πscaled , where L is the binomial dis-
tribution matrix described in [24]) and predicting the detector response to the original unscaled
inputs, {| αi〉}. For all the bias currents, the difference between the predicted click probability
and the raw data (i.e. |R1/RT −Tr[Πunscaled |αi〉〈αi|]|) is less than 0.15% on average and has a
maximum of 1.4%. This indicates that we have accurately estimated the SNSPD POVM using
the scaling technique.

3. Generalized model

The lack of ancillary assumptions and models in Detector Tomography make it general and
objective. At the same time, it provides a surplus of information (i.e. O(N) parameters) that
can be difficult to interpret. Tomography can hardly replace the natural ease and intuition that
is associated with a model. A good model candidate is the AM model. Indeed, plotting the AM
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model in Fig. 2(a) (red dashed line) shows that it can be fit to the scaled data.
To find an analytic expression for the SNSPD POVM in the number state basis we repeated

the derivation of the AM model given in [17] with one change: We derived the detector response
to a Fock state rather than a coherent state input. The parameter values in the model should
remain the same in either case. Thus, using the parameter values from the AM model curves
in Fig. 2(a) we plot the AM POVM in Fig. 2(b) (red dashed line). Substantial disagreement
between the tomographic POVM and the AM POVM suggests there is an error.

Indeed, further investigation revealed that in Eqs. (4) and (5) in [17] the average photon
number is used in place of the actual photon distribution. The resulting error is only revealed
in the comparison of analytical and tomographic POVMs. We fixed this error and found that
the resulting analytic POVM has a form that is applicable to general SPD detectors. Leaving
behind the SNSPD specific derivation in [17], we now introduce a broad detector model that is
able to describe nonlinear SPDs. We do this by generalizing Eq. (1) to multiphoton detection.

Consider a binary detector that is only sensitive to n number of photons; any less and the
detector responds with No Click, any more and it still only outputs one Click. This is the n-
photon generalization of the SPD and, hence, we call it an n-photon detector (NPD). If m > n
photons impinge on the detector, there are m choose n ways for those m photons to trigger the
NPD. Consequently the generalization of Eq. (1) is:

πNPD
0 =

∞

∑
m=0

(1−Pn)
(m

n) |m〉〈m| , (2)

where πNPD
0 is the No Click operator, Pn is the n-photon detection efficiency and

(m
n

)
is the

binomial coefficient (= 0 for n > m, = 1 for n = 0). This generalization works even for a zero
photon detector. We can identify P0 as what is commonly called the ‘dark count probability’
per gate window.

A nonlinear SPD can be modeled as concurrent NPDs. As shown in Fig. 3(a), the model
consists of a logical OR between M NPDs, where M represents the maximum number of mech-
anisms that should be present in order to describe the response of the detector before it saturates
at high intensities. The associated POVM operators are:

πNL
1 = l−

∞

∑
m=0

M−1

∏
n=0

(1−Pn)
(m

n) |m〉〈m| , (3)

for Click and πNL
0 = 1 − πNL

1 for No Click. The Click probability of the nonlinear SPD in
response to a coherent state | α〉 is:

PClick(α) = 1−
∞

∑
m=0

e−|α |2 |α|2m

m!

M−1

∏
n=0

(1−Pn)
(m

n). (4)

This can be rewritten in matrix form as:

C = FΠ = F (E − exp(GH)) , (5)

where C (with dimensions D×1), includes the D measured statistics, R1/RT ; Π (N ×1)
includes the diagonal elements of πNL

1 ; F contains the D coherent state probes, Fi, j =

|αi|2 jexp
(
−|αi|2

)
/ j!; E is a matrix of ones; G is a matrix of binomial coefficients such that

Gi, j =
( j−1

i−1

)
; and H (M×1) is an unknown matrix which includes the unknown set {Pn},

Hi,1 = ln(1−Pn=i−1).
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Fig. 3. (a) The Nonlinear Single Photon Detector model. Each element represents an n-
Photon Detector. A broadly applicable model is created by logically ORing these elements.
(b) {Pn} at 16μA found under different scaling factors, k. ♦, ©, �, 	, 
, and ✩ represent
Pn=0 to Pn=5 respectively. The corresponding dashed lines have slopes equal to n on a
log-log plot. The plot shows a linear optical loss of η scales Pn → ηnPn.

We estimate H by solving the following constrained nonlinear multivariable optimization
problem:

min

∥∥∥∥
C−FE +F exp(GH)

C

∥∥∥∥
2
, (6)

subject to H ≤ 0. The second norm of a matrix is defined as ‖A‖2 =
(

∑i, j

∣∣Ai, j
∣∣2)1/2

. Each

element of the expression is normalized to C to give equal weighting to all the points. The
constraint of the problem ensures the optimization leads to a physical result for the set {Pn}.
We note the function exp(αx) is convex on R for any α ∈ R [25], which also makes Eq. (6)
convex.

We first solve Eq. (6) for scaled input states. From the estimated {Pn} we only keep those
elements that change the minimum of Eq. (6) by more than 1% (25μA: {P0, P1}; 20μA:
{P0, . . . , P4}; 16μA: {P1, . . . , P4}). These parameters classify the operation of the SNSPD,
from a standard SPD at 25μA to a composite of one, two, three, and four photon detectors at
16μA.

From these {Pn} we calculate the nonlinear SPD Click POVM operator for the three bias
currents in Fig. 2(b) (black dotted line). They agree with the tomography POVMs to within 1%
for most of the elements of Π. For 25μA and 20μA the maximum difference is 3% at Π(n = 1)
and 6% at Π(n = 3) for 16μA. This excludes the large error at Π(n = 0), which we attribute to
insufficient measured statistics at extremely small mean photon numbers. The Quantum Fidelity
(see [24] for a definition) of the model and tomography operators are above 99.8% for all
three bias currents. Thus, the model successfully gives the POVM of the SNSPDs including
their nonlinearity, but with a dramatic reduction in the number of parameters compared to
tomography.

We can attribute the SNSPD nonlinearity to the fact that at lower bias currents the absorption
of multiple photons in close proximity and within a short period of time can inject enough
energy to switch the wire to normal state more efficiently than independent absorptions. This is
indeed compatible with the early observations on SNSPDs [18]. Moreover, the capability of our
nonlinear SPD model to reproduce the non-linearity of measured curves in Fig. 1(b) with few
parameters (only P2 at 20μA and P2,P3 at 16μA) reconfirms the detector includes some NPDs
as its basic detection elements. This rules out the other possible justifications of the observed
nonlinearities including heating effects at higher input photon flux.
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In Fig. 1(b), we plot the model’s predicted response to the coherent state inputs, with param-
eters from the unscaled data (black dotted line). The difference with the measured statistics is
less than 0.34% on average (i.e the minimum found in Eq. (6) divided by the number of points).

Unlike the standard SPD, where P1 → ηP1 under a preceding optical loss of η , there is
no analytic formulae for how {Pn} transform under loss. By inspection of the scaled and non-
scaled model fits (see Fig. 3(b)), however, each element of {Pn} that is significant approximately
satisfies log(Pn(

1
k ))− log(Pn(

1
k = 1)) = n log( 1

k ). Thus significant elements of {Pn} scale as ηn.
Consequently, removing any linear optical inefficiency from a nonlinear photon counter makes
it more nonlinear. We also note that, as expected, P0 is not dependent on the optical input as
expected.

4. Conclusion

The almost identical outcome of Detector Tomography and the nonlinear SPD model confirms
both of them are reliable. This is a good example of how Detector Tomography is particularly
useful for characterizing detectors outside their normal operating regime, where there is no
model for their operation. Even though only classical optical pulses were used as input states for
the tomography, the resulting POVM allows one to predict the detector response to any input,
including non-classical states such as Fock states. We expect the nonlinear SNSPD model to be
useful for other nonlinear binary detectors such as two-photon absorbing Avalanche Photodi-
odes and Electron Multiplying CCDs (thresh-holded). It will also be useful for characterizing
conventional SPDs and putting limits on their nonlinearity.
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