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Measurement is the only part of a general quantum system that has yet to be characterised experimentally in
a complete manner. Detector tomography provides a procedure for doing just this; an arbitrary measurement
device can be fully characterised, and thus calibrated, in a systematic way without access to its components or its
design. The result is a reconstructed POVM containing the measurement operators associated with each
measurement outcome. We consider two detectors, a single-photon detector and a photon-number counter, and
propose an easily realised experimental apparatus to perform detector tomography on them. We also present
a method of visualising the resulting measurement operators.
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1. Introduction

A quantum protocol or experiment can be divided

into three stages: preparation, processing, and

measurement. Quantum state tomography [1–3] and

process tomography [4,5] respectively prescribe

a procedure to completely characterise the first two

stages, and have been successfully demonstrated

experimentally. State tomography has played

a crucial role in identifying and visualising novel

quantum states [6,7]. Process tomography is critical

for verifying the operation of quantum logic gates [8]

and characterising decoherence processes [9].

Completing this triad, detector tomography is

a procedure for determining the POVM (positive

operator-valued measure) set of an arbitrary quan-

tum detector [10]. Thus, without any knowledge of

the inner workings of the detector we could predict

its response to any input. To the best of our

knowledge, detector tomography has not been

demonstrated. Here, we propose an experimental

testbed capable of performing detector tomography

on measurement devices acting in the Fock space of

the optical mode (i.e. the photon number Hilbert

space). Precise knowledge of the detection POVM set

is beneficial for measurement driven quantum

information processing, such as cluster-state comput-

ing [11]. It is also critical for state and process

tomography, which use the measurement as

a reference. Recently, it has also been shown that

one can perform enhanced measurements by project-
ing onto non-classical states with a detector [12,13].
Without any need for a theoretical model of the
detector, detector tomography can establish which
states the detector projects onto, possibly establishing
whether they are indeed non-classical.

We will begin by introducing the general experi-
mental and theoretical requirements for performing
detector tomography. We will then describe the
detectors which we aim to characterise using our
proposed testbed. Following this, we will provide
a description of the testbed we have proposed to
characterise the aforementioned detectors. Finally, we
outline a method of visualising the POVM elements in
terms of Wigner quasi-probability distributions.

2. Detector tomography

Detector tomography is a method of experimentally
determining the POVM associated with the detector.
A theoretical description of detector tomography was
introduced by Luis and Sánchez-Soto [10] in 1999,
a maximum-likelihood technique was applied in [14]
in 2001, ancilla-assisted detector tomography was
considered in 2004 in [15], and an optimal processing
scheme devised in 2007 in [16].

In elementary quantum mechanics, a measurement
is described by a Hermitian operator Â which can be
decomposed into a sum of projectors �̂i with weights �i,
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where each projector corresponds to an outcome of the
measurement:

Â ¼
X
i

�i�̂i: ð1Þ

These projectors �̂i are often deduced by the action
of the measuring device in the classical regime.
For example, since a calcite crystal spatially separates
the polarisation components of a laser beam it is
reasoned to act similarly at the quantum level on single
photons (i.e. �̂1 ¼ jHihHj and �̂2 ¼ jVihVj, horizontal
and vertical polarization projectors aligned with the
axes of the calcite). This example is justified by
a theoretical model, namely quantum-electrodynamics,
which shows the classical field reduces to field
operators at the quantum level. However, some
measurements, such as Bell-state measurement [5] or
single-photon detection, cannot be traced back to any
classical device. These quantum detectors typically rely
on an unsystematic combination of a theoretical model
(e.g. semiconductor theory) and detector characterisa-
tions of limited scope (e.g. of the detector noise and
efficiency). In contrast, detector tomography would
provide a systematic method, with minimal assump-
tions, to characterise these quantum detectors and,
thus, predict their action on a general input state.

The most general type of quantum measurement
is described by a POVM, a set of positive-semidefinite
operators Ô� corresponding to the measurement out-
comes. These generalised measurements are uniquely
quantum in the sense that they have no analogue in the
classical regime. For instance, any POVM can be
implemented by coupling the measured system to an
ancilla system and then performing projective measure-
ments on the combined system [17]; the coupling has the
potential to create entanglement between the two
systems, which is impossible in the classical regime.

In some ways, detector tomography is very similar
to the established procedure of state tomography. In
state tomography, one begins with an ensemble of
systems prepared identically in state �̂. A measurement
Ô�, is performed on a subset of the ensemble for the
purpose of estimating the probability P�:

P� ¼ TrðÔ��̂Þ: ð2Þ

This is repeated for a set of measurements {Ô�},
producing a set of estimated probabilities {P�}.
Through Equation (2) and the precise knowledge of
the form of each measurement Ô�, one can estimate �̂.
Significantly, the role of Ô� and �̂ are symmetric in
Equation (2). This means that with a set of known
input states f�̂�g one could instead estimate an
unknown measurement Ô through Equation (2),
which is the goal of detector tomography.

Despite these similarities, state and detector tomo-

graphy have some important differences. One obvious

difference is that the former seeks to reconstruct

a single operator, �̂, whereas the latter seeks to

reconstruct a set of operators {Ô�}, �¼ 1 . . .D, where

D is the number of measurement outcomes. Both the

density matrices and the POVM elements must be

positive-semidefinite and, hence, Hermitian. However,

density matrices have a trace of one, whereas a POVM

element does not. Instead, a POVM set {Ô�} must

satisfy,

XD
�¼1

Ô� ¼ Î , ð3Þ

where Î is the identity, ensuring that the probabilities

for all the measurement outcomes sum to one. This has

implications for mathematical strategies for recon-

struction, such as maximum likelihood, where

Equations (2) and (3) must be included as constraints

on the reconstructions.
Generally, in tomography one requires what is

known as a ‘tomographically complete’ set to reference

against. In state tomography, this translates to a set of

reference measurements {Ô�} that span the linear

algebra space of the density matrix to be reconstructed.

This d 2
� 1 dimensional space is called the Hilbert–

Schmidt space and should not be confused with the

d dimensional Hilbert space of the state (the �1 term

comes from the trace one constraint). In detector

tomography, the reference states f�̂�g must span the

Hilbert–Schmidt space of the POVM set. A spanning set

will necessarily have at least d 2 elements in it.

To determine if a particular d 2 sized subset of the

total set spans the space, one first vectorises each

element in the subset, then stacks these row vectors into

a matrix, and then calculates the determinant. If the

determinant is non-zero this subset is a spanning set and

hence, the set of reference states (or reference measure-

ments, in the case of state tomography) is tomographi-

cally complete.We shall consider an example later in the

paper.

3. The detectors

Before performing detector tomography, one needs to

analyse the detectors in order to identify the Hilbert

space they function in, and then find a suitable set of

input states. We propose a testbed for two types of

related detectors: the avalanche photodiode (APD),

and the time-multiplexing detector (TMD).
APDs are photodiodes that use the avalanche effect

(i.e. impact ionisation leading to the exponential

multiplication of carriers) to achieve sensitivity to
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single photons. These detectors have the remarkable
ability to detect a single photon. Unfortunately, if
more than one photon is detected this information is
lost in the avalanche. Hence, this detector acts as
a binary detector; the two possible detection outcomes
are detection of at least one photon (CLICK) and the
detection of no photons (NO CLICK). For each photon
impinging on the detector there is an intrinsic efficiency
of the detector �APD that the photon will cause an
avalanche. The probability of detecting at least one out
of n photons is given by

PðCLICKÞn ¼ 1� 1� �APDð Þ
n , ð4Þ

and the probability of detecting none of the n photons is

PðNO CLICKÞn ¼ 1� �APDð Þ
n: ð5Þ

Thus, there is a non-zero probability of getting a NO

CLICK event, even with photons hitting the detector.
The detection can be approximated with the two
POVM elements,

NO CLICK: Ô0 ¼
X1
n¼0

1� �APDð Þ
n nj i nh j , ð6Þ

CLICK : Ô1 ¼ Î�
X1
n¼0

1� �APDð Þ
n nj i nh j: ð7Þ

These approximate POVM elements do not include
effects such as dark counts, afterpulsing, and detector
saturation. The contributions from dark counts and
afterpulsing can cause detection events without an
actual photon being present. They will increase the
values of the Ô1 matrix elements. However, since dark
counts are independent of the actual count rate they
should predominantly affect the matrix elements at low
photon numbers. Conversely, afterpulsing is dependent
on a counting event happening before, and thus, would
be more prominent for higher photon numbers.
Detector saturation would manifest itself by
a dependence of �APD on n. These effects would have
to be included in a more complicated detector model if
one desired to derive more realistic POVM elements.
Previous experiments with APDs [18] indicate that
these approximate POVM elements will be
a reasonable model on which to design a testbed.

Several schemes have been proposed to overcome
the lack of photon number resolution with APDs
[19–21]. In a time multiplexing detector, the pulse under
investigation is split into several spatial and temporal
bins and then detected with APDs [18,22,23].
The principle of operation of our implementation is
depicted in Figure 1. The pulse under investigation (I) is
split at a beamsplitter and one of the two spatial modes
(II) is delayed with respect to the other one (III).

The two spatial modes are then recombined at
a beamsplitter, resulting in two temporal modes in
each of the spatial outputs of the beamsplitter (IV).
Additional delay stages can be added to further increase
the number of temporal modes. We propose to perform
detector tomography on a TMD with two delay stages,
resulting in a total of eight output bins. The advantage
of splitting the incoming pulse into many bins is that if
the pulse contains several photons these may be
distributed into different bins and, thus, counted as
individual photons by APDs. The measurement result
of the TMD is the number of CLICK events summed over
all the bins. Thus, for our detector, with two stages,
there are nine outcomes, 0 to 8 CLICKS. Unfortunately, k
CLICKS does not imply there were only k photons at the
TMD input. Photons may end up in the same bin and,
thus, result in fewer clicks than the number of photons
in the input pulse. Photons also suffer from losses in the
TMD and the detection efficiency of the APDs. While
this introduces an uncertainty in the measurement
outcome on a shot-to-shot basis, for an ensemble
measurement of the same quantum state the resulting
click-statistics p can be related to the photon number
statistics p of the input state by

p ¼ C � Lp , ð8Þ

where L represents the losses in the system and C is
called the convolution matrix, which accounts for
several photons ending up in the same bin after
splitting. The loss matrix can be calculated by
combining all losses in the system and modeling them
as a single beam splitter with reflectivity �loss at the
front of the fibre network [24,25] as

Ln0n ¼

n

n0

� �
1� �lossð Þ

n0�n�n
0

loss , if: n � n0 ,

0 , otherwise ,

8<
: ð9Þ

with n, n0 2 [0; N]\N. This simply describes the
probability of n0 out of n photons being transmitted.

50:50 50:50

ΔT

II I III IV

ΔT

APD

APD

Figure 1. Schematic of a time multiplexed detector.
The incoming pulse (I) is split at a 50 : 50 beam splitter.
The resulting pulses (II) are partially delayed (III) and then
split again (IV). The initial input pulse (I) ends up in several
temporal and spatial bins (IV), which are then detected with
APDs. (The colour version of this figure is included in the
online version of the journal.)
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For the convolution matrix one has to take into
account all possible routes a photon could take
through the fibre network [26] and the matrix elements
can be calculated as follows:

In reality, the beamsplitters used in the TMD are never

exactly 50% reflective due to variation in their

manufacture. For a N-bin TMD, p1, . . . , pN are the

probabilities of a single photon exiting from the fiber

network in a particular bin. While these probabilities

would all be equal in the case of 50/50 beamsplitters,

we set them by calibration measurements using an

intense laser input pulse. The first two lines of

Equation (10) correspond to the straightforward

cases of more photons being detected than entering

the detector (for which the probability is zero, if dark

counts and afterpulsing are negligible) and detecting all

incoming photons, respectively. In the third case,

k5 n, all possible combinations of distributing these

n photons into the bins have to be taken into account.

These different combinations are represented by the

k-tuples b¼ (b1, b2, . . . , bk) with bi2 [1; N]\N and

b1 6¼ b2 6¼ � � � 6¼ bk. Some of the bins can be occupied

by more than one photon. All possible distributions of

the photons across the bins are described by the

possible partitions of n into k parts. These can be

represented by k-tuples c¼ (c1, c2, . . . , ck) with

ci2 [1; n]\N and c15 c25 � � �5 ck,
P

k ck¼ n, and

the definition c0¼ 0. For each bin, one has to consider

all possible ways in which the cj photons ending up in

this particular bin can be chosen. With the photons

remaining to be distributed given by n�
Pj�1

l¼0 cl, the

binomial coefficient in Equation (10) accounts for this.

However, if some of the elements of the tuple c are

equal, the binomial coefficient will overestimate the

number of distributions. Bins occupied with the same
number of photons are not distinguishable, but are
counted separately. This must be corrected for by
dividing by the number of permutations these bins can

form, i.e. the factorial of the number of bins with equal

number of photons. We denote this by id(c)!. For

example for the tuple c¼ (4; 4; 2; 2; 2; 1), id(c)!¼ 2! � 3!.
For the eight bin TMD that we plan to use in the

proposed detector tomography scheme, the convolution

matrix was calculated using classical measurements of

the probabilities p1, . . . , pN and reads:

The matrices developed above actually contain

the POVM elements describing the TMD. We
expect these POVM elements to be diagonal in the
photon number basis since the TMD has no

phase reference and, thus, no sensitivity to off-diagonal
coherences. In Equation (8), the matrix C �L

represents the reaction of the detector to different

numbers of incoming photons. When the matrix
CL acts on a photon number distribution p, the

probability of a particular measurement outcome
is found by taking an inner product of p with the
corresponding row of the matrix. This action is

similar to the action of the trace in Equation (2), as
we will demonstrate explicitly. This allows us to identify
the rows of C �L as the diagonals of the TMD’s POVM:

Ôj ¼

C � L½ �j0 0 0 0 0

0 . .
.

0 0 0

0 0 C � L½ �ji 0 0

0 0 0 . .
.

0

0 0 0 0 C � L½ �jN

2
666666664

3
777777775
, ð12Þ

Ckn ¼

0 , k4 n ,P
b

pb1pb2 . . . pbn , k ¼ n ,

P
b

P
c

1

idðcÞ!

Yk
j¼1

n�
Xj�1
l¼0

cl

 !
cjp

c1
b1
pc2b2 . . . pckbk

" #
, k5 n:

8>>>>><
>>>>>:

ð10Þ

C ¼

1 0 0 0 0 0 0 0 0

0 1 0:128 0:017 0:000 0:000 0:000 0:000 0:000

0 0 0:872 0:334 0:101 0:028 0:008 0:002 0:001

0 0 0 0:649 0:496 0:265 0:123 0:053 0:022

0 0 0 0 0:402 0:509 0:422 0:290 0:181

0 0 0 0 0 0:198 0:375 0:444 0:423

0 0 0 0 0 0 0:073 0:193 0:308

0 0 0 0 0 0 0 0:018 0:063

0 0 0 0 0 0 0 0 0:002

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð11Þ
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where j is the j-CLICKS outcome, and [C �L]ji is the

value in the jth row and ith column of C �L.

The density matrix of the incoming quantum state is

related to p via

�̂ ¼

�0 �0,1 � � � �0,N

�1,0 �1 � � � �1,N

..

. ..
. . .

. ..
.

�N,0 �N,1 � � � �N

2
66664

3
77775 , ð13Þ

expressed in the number basis, where the ith element

of p is �i. We leave the off-diagonal elements of �̂
as undetermined, since they do not contribute after

the trace. Using this form we evaluate the trace in

Equation (2):

TrðÔj�̂Þ ¼ Tr

C �L½ �j0 0 0 0 0

0 . .
.

0 0 0

0 0 C �L½ �ji 0 0

0 0 0 . .
.

0

0 0 0 0 C �L½ �jN

2
666666664

3
777777775

0
BBBBBBBB@

�

�0 �0,1 � � � �0,N

�1,0 �1 � � � �1,N

..

. ..
. . .

. ..
.

�N,0 �N,1 � � � �N

2
66664

3
77775

1
CCCCCCCCA

ð14Þ

¼Tr

C �L½ �j0��0 0 0 0 0

0 . .
.

0 0 0

0 0 C �L½ �ji��i 0 0

0 0 0 . .
.

0

0 0 0 0 C �L½ �jN��N

2
666666664

3
777777775

0
BBBBBBBB@

1
CCCCCCCCA

ð15Þ

¼
XN
i¼0

C � L½ �ji��i ¼ pj: ð16Þ

This last line is equivalent to Equation (8), as we

expected.
As we have shown, one can derive a theoretical

POVM set to describe a time-multiplexed detector.

However, as with the APD, this is a simplified

description of the POVM and does not include

afterpulsing (which can result in a click from one

time bin triggering a click in the next), dark counts in

the APDs at the outputs, as well as imperfections in the
counting electronics (which can be considerably
complicated).

In summary, the APD and the TMD perform their
measurements in the Fock space of the optical mode.
Furthermore, both detectors have POVMs that are

expected to be diagonal in the photon-number basis.
Since this confines their action to a subspace of the
Fock space, it should allow us to simplify the
tomography. For the APDs all photon numbers
apart from zero photons are combined into a single

detection event and, to a first approximation, the only
detector parameter is the efficiency. This makes the
APD a rather simple detector and a theoretical
model of their POVM elements was easily calculated.
Thus, APDs would be the first detector with which

we propose to demonstrate a proof of principle
detector tomography. The TMD, on the other hand,
is non-trivial to describe, with both the loss and the
convolution matrix having complicated forms.
Incorporating realistic APDs into this model would

be challenging, if not impossible. Consequently, the
TMD is the second detector that we propose to
perform detector tomography on. It is a suitable
candidate for a serious test of the detector tomography
procedure. We propose to compare the reconstructed

POVM set to the theoretical ones derived above to
check how accurate our detector models really are.

4. The proposed testbed

To perform tomography of these two detectors, we
need probe states in the Fock space. We must also

identify a set of states that span the space of the
detector operators, i.e. a tomographically complete set.
Since neither detector possesses a phase-reference (such
as a local oscillator), we make the safe assumption for
our proposed testbed that the off-diagonal components

of {Ô�} for each detector are zero in the photon-
number basis. It follows that each Ô� contains d free
parameters, one for each diagonal element, where d
is the dimension of the Hilbert space.
The tomographically complete set will then contain

at least d input states. Unfortunately, the photon
number representation of the Hilbert space is infinite,
and so we must truncate it at some point for our
mathematical reconstruction. This truncation sets the d
we shall use in the tomography testbed we propose.

A good point to set this truncation at is in the region in
which the detector behaviour has saturated to
a constant. For example, we expect the TMD’s
response to 100 photons and 101 photons will be
nearly identical (outcome 8-CLICKS with �100%
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probability), making d¼ 100 a good place to truncate.

Since we do not require sensitivity to inter-photon

coherences a naturally tomographically complete set of

input states f�̂�g for our proposed testbed is the Fock

states. Each input Fock state would allow us to

determine the corresponding diagonal element in

each of the TMD’s measurement operators {Ô�}.

However, Fock states are difficult to produce with

high fidelity. Fortunately, another candidate, the

coherent state, is straightforward to produce with

high-fidelity.
Apart from being the quantum state that most

resembles a classical state, coherent states have

a unique property under attenuation: in the photon-

number basis, a coherent state j�i can be written,

j�i ¼
X1
n¼0

exp �
j�j2

2

� �
�n

ðn!Þ1=2
jni , ð17Þ

which results in a Poissonian photon-number distribu-

tion. With attenuation 1� �, the coherent state trans-

forms according to

Û�j�i ¼ j��i ¼
X1
n¼0

exp �
�j�j2

2

� �
�1=2�
� �n
ðn!Þ1=2

jni: ð18Þ

This is another coherent state with a lower mean

number of photons. This property is important for the

creation of known states in the low photon number

regime, a necessity for tomography on single photon

detectors. Specifically, the high-fidelity coherent states

produced by a laser could be easily attenuated to

power levels suitable for the tomography while still

retaining their form. Attenuation also reduces the

impact of technical noise in the laser. The fractional

uncertainty in the photon number of a coherent state,
�n/hni, is – once it is attenuated to a low photon level –
much higher than the pulse-to-pulse jitter of the pulse

energy of our laser source (typical values around 2%).

This suggests that the use of coherent states would also

be reasonably robust against technical noise.
It is well known that a continuous set of coherent

probe states j�i form a basis for the Fock space,

j i ¼

ð
d� j�ih�j i: ð19Þ

However, it is not as clear that they form a basis for the

Hilbert–Schmidt space. The proof that they do lies in

the existence of the P-function P(�):

�̂ ¼

ð
Pð�Þj�ih�jd2�: ð20Þ

However, we expect to use a discrete subset of

coherent states j�ii rather than the full continuous

basis for our proposed detector tomography testbed.

We now attempt to find if this reduced set is

tomographically complete. We vectorise d coherent

states density matrices j�ii h�ij, i¼ 1 . . . d, keeping only

the diagonals (since our detector POVM set is

contained within this subspace). Stacking these row

vectors into a matrix, we find,

0j�1h ij j2 1j�1h ij j2 . . . dj�1h ij j
2

0j�ih ij j2 . .
.

..

. . .
.

0j�dh ij j2 dj�dh ij j
2

2
666664

3
777775: ð21Þ

The next step, finding the determinant, is difficult to do

in general. Instead we consider a specific set of d¼ 10

reference coherent states, in evenly spaced steps from

j�1j
2
¼ 1 to j�10j

2
¼ 10. The determinant

implying that this set is tomographically complete, for
a space truncated at photon number basis state n¼ d.
Consequently, it appears that a finite set of coherent

Det

0:37 0:37 0:18 0:06 0:02 0:00 0:00 0:00 0:00 0:00

0:14 0:27 0:27 0:18 0:09 0:04 0:01 0:00 0:00 0:00

0:05 0:15 0:22 0:22 0:17 0:10 0:05 0:02 0:01 0:00

0:02 0:07 0:15 0:20 0:20 0:16 0:10 0:06 0:03 0:01

0:01 0:03 0:08 0:14 0:18 0:18 0:15 0:10 0:07 0:04

0:00 0:01 0:04 0:09 0:13 0:16 0:16 0:14 0:10 0:07

0:00 0:01 0:02 0:05 0:09 0:13 0:15 0:15 0:13 0:10

0:00 0:00 0:01 0:03 0:06 0:09 0:12 0:14 0:14 0:12

0:00 0:00 0:01 0:02 0:03 0:06 0:09 0:12 0:13 0:13

0:00 0:00 0:00 0:01 0:02 0:04 0:06 0:09 0:11 0:13

2
666666666666666666666664

3
777777777777777777777775

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

6¼ 0 , ð22Þ
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states are a good set of reference states for our

proposed detector tomography testbed.
An essential requirement for a tomography

system is precise and accurate knowledge of the
probe states. In the context of our proposed testbed,
this translates to knowing � accurately. Keeping in
mind that j�j2 will be less than 100, a direct

measurement is out of reach of commercial power
meters. For a coherent state the mean number of
photons hni is connected to � via

hni ¼ j�j2: ð23Þ

For pulsed light of the wavelength � and the repetition
frequency f the time averaged power P can be

calculated by

P ¼
hnihcf

�
, ð24Þ

which then enables a calculation of j�j2 from the
measured power:

j�j2 ¼
P�

hcf
: ð25Þ

While � and f can generally be determined accurately,
P cannot. Systematic error in the power measurement

would result in a global scaling of the detector
response: the reconstructed ‘efficiency’ of the detector
would scale by the error, while the form of the POVM
element would remain unchanged. We expect this j�j2

systematic error to be less than 5%. For j�j2¼ 1,
�¼ 800 nm and f¼ 100 kHz (experimental parameters,
we plan to run the proposed tomography on), P¼ 25
attowatts, a strikingly low average power.
However, since coherent states are invariant under

attenuation, a highly transmissive beamsplitter could
be used to pick off a large portion of the incoming
beam. If the ratio of power in the transmitted and
reflected arms is well calibrated, the high power arm
can be used to monitor the power in the low power

arm. This can leverage the power into the microwatt
range, accessible to power meters with calibrations that
can be traced to a National Standards Institute. In our
proposed testbed, this beamsplitter would be

placed after a variable attenuator, used to set �, as
depicted in Figure 2. For phase-sensitive detectors,
a tomographically complete set of input states could be
generated simply by adding a variable path length for
the coherent state in the testbed, to phase shift �, i.e.
�! � exp(i	).

We simulated the tomography of a TMD with our
proposed testbed by using the model given in Equation
(8). We used the convolution matrix for our TMD
displayed in Equation (11) and simulated a detector
tomography using 400 different values of j�j2 for the

reference states, ranging from j�j2¼ 0 to j�j2¼ 40. In

Figure 3, we plot the probabilities of both the 1-CLICK

and 5-CLICK outcomes against the j�j2 of the probe

state. The curves for the 1-CLICK and the 5-CLICK

outcomes have very different shapes with small over-

lap: while the 1-CLICK exhibits a well defined peak for

low j�j2, the 5-CLICK peak is much broader and has

a maximum at higher j�j2. This shows that different

measurement outcomes are associated with easily

distinguishable responses to a spanning set of input

�, suggesting that the mathematical inversion from the

estimated probabilities [e.g. with Equation (2)] is

practical.
An analogous tomography device exists in the area

of Homodyne State Tomography: the eight-port

Figure 3. Simulation of a detector tomography for the
TMD. 400 different values of j�j2 between j�j2¼ 0 and
j�j2¼ 40 were simulated. A comparison between the 1-CLICK
and the 5-CLICK element shows a small overlap and smaller
peak for the 1-CLICK element, while the 5-CLICK element is
broader and peaked at higher photon number.

LASER

HWP BS PMPBS

ND

Detector

Coupling stage

Mirror

Figure 2. Schematic of our detector testbed. A probe beam
undergoes variable attenuation realised with a half waveplate
(HWP) and a polarising beamsplitter (PBS). A large portion
of the beam is split off at a beamsplitter (BS) and detected by
a power meter (PM) to monitor the variable attenuation,
while the smaller portion of the beam is further attenuated
with neutral density filters (ND) and then coupled into the
detector under investigation. (The colour version of this
figure is included in the online version of the journal.)
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homodyne system. This device projects the unknown
state onto a coherent state, much the same as our
proposed testbed. It has been pointed out that
reconstruction of the density matrix from the measured
data in an eight-port homodyne system is an ill-
conditioned problem [27]. Noise in the measured data
causes the inversion of Equation (3) to have large
errors, indicating that while coherent states form
a tomographically complete basis, they are still
deficient for tomography. Considering noise from
counting statistics, in detector tomography the data
set size is limited only by the repetition rate of the laser,
which can be as high as 80MHz. Thus, we can quickly
accumulate enough data such that counting errors for
each outcome are insignificant. However, sources of
noise, other than from counting, can hamper inversion.
To counter the effect of these a common strategy is to
introduce some amount of regularisation to the
inversion [28]. Often, this regularisation is implicit in
the reconstruction, as in the Radon Transformation or
Pattern Functions used in two-port homodyne tomo-
graphy, which introduce smoothing of the data [29].
Indeed, filtering of data is a common technique
established in the origins of tomography in medical
computer imaging. These techniques have yet to be
used in detector tomography, but we expect their
application will be fruitful.

5. A phase-space representation of the POVM

A common complaint about quantum tomography is
that the end result is difficult to interpret physically
[5,8,30,31]. For example, in process tomography the
reconstructed map for the process has d2� d2 elements
for a d dimensional Hilbert space and thus quickly
becomes too large to understand upon inspection.
A reconstructed POVM set can similarly contain
a large number of independent parameters, (D�1)�d2

if there are D measurement outcomes. However, the
measurement operators {Ô�} benefit from their math-
ematical similarities to density states, allowing us to
apply many of the same representation methods. Our
detectors operate in the Fock space, which can be
represented in the x and p basis, where x and p are the
normalised electric field quadratures. This points to
a particularly appealing representation commonly used
to represent the state of a field mode, the Wigner
function.

The Wigner function W� is calculated in the
standard way from the POVM element Ô� [32]:

W�ðx,pÞ ¼
1

p�h

ð1
�1

dy hx� yjÔ� jxþ yi expð2ipy=�hÞ:

ð26Þ

Since the measurement operators {Ô�} are not
trace ones, this detector Wigner function is not
normalised, ð1

�1

dx

ð1
�1

dpW�ðx,pÞ5 1 , ð27Þ

and its marginals should not be interpreted as
probability distributions. Nonetheless, it retains some
appealing features. For example, the probability of
measurement outcome � is,

P� ¼ Tr ð�̂Ô�Þ ¼

ð1
�1

dx

ð1
�1

dpW�ðx,pÞW�ðx,pÞ ,

ð28Þ

where W� is the standard Wigner function of the input
state �̂. Thus, one can visualise the measurement as the
overlap of the two Wigner functions.

We plot the Wigner functions of the theoretical
measurement operators of the TMD in Figure 4.
The TMD has no phase sensitivity and so the Wigner
function for each measurement operator is rotationally
symmetric around a vertical axis through the origin.
Thus, on the right of Figure 4 we also present a cross-
section of each Wigner function to show its form more
clearly. The Wigner functions are found from the
TMD POVM that was derived earlier, assuming a loss
of 48%. We show three of the nine measurement
operators, namely 0-CLICK, 1-CLICK and 5-CLICK (in the
figure, these are W0(x, p), W1(x, p) and, W5(x, p),
respectively). Remarkably, the 0-CLICK and 1-CLICK
Wigner functions look very similar to their state
counterparts, the vacuum state and single-photon
state. This is despite the fact that there are contribu-
tions from all incoming photon numbers to both
(i.e. four incoming photons might all be lost and thus
result in a 0-CLICK event, or two incoming photons
might end up in the same time bin and thus result in
1-CLICK). The 0-CLICK Wigner function has a Gaussian
profile similar to the vacuumWigner function, whereas
the 1-CLICK event goes negative at the origin just as the
single-photon state does.

The Wigner functions for higher click numbers
quickly diverge from their photonic equivalents
though. The 5-CLICK Wigner function is significantly
different from the five photon Wigner function; the
former has nine radial nodes, whereas the latter has
five (the number of nodes equals the photon number
for Fock states). Since there are only eight bins, there is
a sizeable probability that six or seven incoming
photons entered only five bins in total. Consequently,
there will be significant contributions to the 5-CLICK
Wigner function from these higher photon numbers,
distorting it from the ideal five photon Wigner
function. In contrast, the probability that two or
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three incoming photons entered only one bin is
relatively small, which explains why the 1-CLICK

Wigner function contains much less distortion.

6. Conclusion

We have detailed a proposal for performing detector
tomography on two detectors operating in the Fock

space. The proposed testbed generates a sequence of
calibrated weak coherent states against which to

reference a detector. We have shown that these
coherent states form a tomographically complete set

for the two detectors, and thus, a tomographic
reconstruction of all the POVM elements should be

possible. In the near future, we plan to perform
detector tomography on these two detectors.

However, we envision that a reconstruction of the
POVM elements in the high-dimensional photon

number space will present substantial computational
challenges. The reconstruction will also have to

deal with noise and uncertainty in the input states.
This is usually not considered in state tomography,

where the measurements are considered to be close
to ideal.

With the demonstration of detector tomography,

experimentalists will have general procedures for

characterising all the parts of a general quantum
device: the input states, the quantum circuit, and, now,
the measurement. We expect this detector tomography
to be particularly useful for devices that depend on
generalised measurements for optimal functioning,
such as state or process discriminators (i.e. unambig-
uous state discrimination [33,34]). Detector tomogra-
phy should also be useful for devices where
measurement drives logic such as in cluster-state
computing or linear optics quantum computing.
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