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By using a systematic optimization approach, we determine quantum states of light with definite photon

number leading to the best possible precision in optical two-mode interferometry. Our treatment takes into

account the experimentally relevant situation of photon losses. Our results thus reveal the benchmark for

precision in optical interferometry. Although this boundary is generally worse than the Heisenberg limit,

we show that the obtained precision beats the standard quantum limit, thus leading to a significant

improvement compared to classical interferometers. We furthermore discuss alternative states and

strategies to the optimized states which are easier to generate at the cost of only slightly lower precision.
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Interferometry is one of the most important measure-
ment techniques in physics. Its numerous variations in-
clude Ramsey spectroscopy in atomic physics, optical
interferometry in gravitational wave detectors, laser gyro-
scopes or optical imaging to name but a few. All these
applications aim to estimate the quantity of interest, nor-
mally a relative phase gathered by one ‘‘arm’’ of the
interferometer, with highest possible precision. In this
Letter, we present fundamental limits to this precision in
optical interferometry for light with definite photon num-
ber in the presence of losses. To find these limits, it is
necessary to consider the ‘‘cost’’ of the experiment, i.e., the
required resources, and determine the precision of the
estimated phase as a function of the cost. In optical inter-
ferometry, the required resource is typically identified to be
the number of photons N necessary to reach a desired
precision. Classically, the precision of the estimated phase

scales then like 1=
ffiffiffiffi
N

p
, the so called standard quantum limit

(SQL). Quantum interferometry, on the other hand, prom-
ises to beat this limit by employing highly nonclassical
entangled states to drastically improve the precision to a
scaling 1=N known as the Heisenberg limit [1,2]. The
realization of interferometric measurements beyond the
SQL is a very active field, and recent years have seen
tremendous progress [3–7]. A quantum enhancement in
precision would allow for a significant reduction of the
energy flux while keeping the same measurement preci-
sion. This is important, for example, if the phase is induced
by a fragile sample [3]. However, most of the theoretical
work done so far ignores the unavoidable presence of noise
in the system. Existing treatments come to the conclusion
that the benefit from highly entangled states deteriorates
quickly even if only a small amount of noise is present in
the system [8–12]. This is not really a surprise since states
of this type are typically very fragile: In optical interfer-
ometry, the well-studied N00N state promises to provide
Heisenberg limited sensitivity in phase estimation [13];

however, the loss of merely a single photon renders this
state useless since it collapses into a product of two Fock
states which cannot acquire any phase information.
The Heisenberg limit is believed to be the ultimate

precision in optical phase estimation; however, it is yet
an unsolved problem if this limit can be reached in the
presence of noise and, if not, then what is the ultimate
precision? In this Letter, we answer this question for
optical two-mode interferometry in the presence of photon
losses, which is the limiting source of noise in such experi-
ments. By using a systematic approach, we determine
optimal states with definite photon number leading to the
highest possible precision. Although it turns out that the
Heisenberg limit is unattainable, we show that one can beat
the SQL thus greatly improving precision beyond classical
interferometry. Furthermore we introduce alternatives to
the optimal states, with simpler structure, at the cost of
only slightly less precision.
We consider a general interferometer with two arms as

shown in Fig. 1; in particular, we do not put any restrictions
on the measurement scheme. Channel a is accumulating a
phase ’ relative to channel b, and both arms, a and b, are
subject to photon loss which can be seen as the effect of
fictitious beam splitters inserted at arbitrary locations in
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state

Measure-
ment
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b

FIG. 1 (color online). General optical interferometric setup
with two arms. Channel a acquires a phase ’ relative to channel
b. The two beam splitters in channel a and b symbolize photon
losses.
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both channels. We aim to estimate ’ with the highest
possible precision quantified by using the uncertainty of
the estimated phase ’est,

�’ ¼ hð’estj@h’esti=@’j�1 � ’Þ2i1=2; (1)

which, for an unbiased estimator, is simply the standard
deviation. According to the general theory of quantum
parameter estimation [14–16], �’ is bounded by the quan-
tum Cramér-Rao bound

�’ � 1ffiffiffi
�

p ffiffiffiffiffiffiffi
FQ

p � �’minffiffiffi
�

p ; (2)

where � is the number of experimental runs and FQ is the

quantum Fisher information. It was shown that this bound
can always be reached asymptotically by maximum like-
lihood estimation and a projective measurement in the
eigenbasis of the ‘‘symmetric logarithmic derivative op-
erator’’ [14]. Hence, inequality (2) defines the principally
smallest possible uncertainty in phase estimation, the de-
termination of which is the primary scope of this Letter. An
explicit construction of the measurement operators will be
given elsewhere [17].

Photon losses can be modeled by inserting fictitious
beam splitters with transmissivities �a;b into both arms

of the interferometer which couple the system to (uncorre-
lated) environments. The noise operation and the phase
accumulation commute, i.e., it is irrelevant if photons are
lost before, during, or after channel a acquires its relative
phase with respect to b. If the noise operation is applied
first, the state after tracing out the environmental degrees of

freedom can be written as � ¼ P1
k;l¼0 Kl;aKk;b�inK

y
k;bK

y
l;a

with Kraus operators Kl;a ¼ ð1� �aÞl=2�ð1=2Þâyâ
a âl=

ffiffiffiffi
l!

p
,

where â is the annihilation operator for mode a, and
analogously for mode b. This state acquires a phase

through the transformation �ð’Þ ¼ e�i’âyâ�ei’â
yâ. This

scenario is equivalent to a continuous photon loss model
described by a master equation with loss rates j ln�a;bj per
unit time.

We consider the most general pure input states with
definite photon number N,

jc iin ¼
XN
k¼0

�kjk; N � ki; (3)

where jk; N � ki abbreviates the Fock state jkiajN � kib.
Special cases of (3) comprise, in particular, the highly

entangled N00N state, ðjN; 0i þ j0; NiÞ= ffiffiffi
2

p
, which, in

the absence of noise, leads to Heisenberg limited phase
estimation but is strongly prone to decoherence otherwise.
Equation (3) includes states which are ‘‘less’’ entangled
but more robust representing a trade-off between precision
and robustness. Also, in the absence of additional reference
beams, a superposition of states with different definite
photon number would effectively become a mixture [18]
of these states. Convexity of FQ [19] implies then that the

analysis can be restricted to states with definite photon
number if we use them successively [17].
In the case of no losses, the state of the system,

jc ð’Þi ¼ e�i’âyâjc iin, remains pure, and the quantum
Fisher information reads

FQ ¼ 4½hc 0ð’Þjc 0ð’Þi � jhc 0ð’Þjc ð’Þij2�
¼ 4½�ðâyâÞ�2; (4)

where ½�ðâyâÞ�2 is the variance of âyâ with respect to the
state jc iin and the prime indicates a derivative with respect
to ’ [14]. In the presence of noise, the pure input state will
deteriorate into a mixture �ð’Þ. If the eigenvalues and
eigenstates of �ð’Þ are known the quantum Fisher infor-
mation can be easily calculated [14]. However, very often
the analytical diagonalization of �ð’Þ turns out not to be
feasible. In this case, if the density operator is given in the
form �ð’Þ ¼ P

pjjc jð’Þihc jð’Þj, where the jc jð’Þi are
not necessarily orthogonal, we can use the convexity of FQ

[19] to obtain an upper bound

FQ � ~FQ ¼ 4
X
j

pj½�ðâyâÞj�2; (5)

where the variance corresponds to jc jð’Þi. The bound is

reached if the spaces spanned by fjc jð’Þi; jc 0
jð’Þig and

fjc ið’Þi; jc 0
ið’Þig are orthogonal for j � i. Particularly,

we have FQ ¼ ~FQ for the N00N state and, generally, if

photon losses are only present in one channel, i.e., �b ¼ 1.
The latter is relevant if the phase ’ is induced by a sample
in arm a which also causes the majority of photon losses.
Applying Eq. (5) to the state (3), we get

~F Q ¼ 4

�XN
k¼0

k2xk �
XN
l¼0

XN�l

m¼0

ðPN�m
k¼l xkkB

k
lmÞ2P

N�m
k¼l xkB

k
lm

�
(6)

with xk ¼ j�kj2 and Bk
lm � ðklÞðN�k

m Þ�k
að��1

a �
1Þl�N�k

b ð��1
b � 1Þm. For �b ¼ 1, we have

~F Q ¼ FQ ¼ 4

�XN
k¼0

k2xk �
XN
l¼0

ðPN
k¼l xkkB

k
l Þ2P

N
k¼l xkB

k
l

�
(7)

with Bk
l � Bk

l0. Obviously, the phases of the �k are irrele-

vant. Furthermore, we proved analytically that ~FQ and FQ

are concave functions of the fxkg [17]. This simplifies the
numerical maximization of ~FQ or FQ, and, more impor-

tantly, it implies that any maximum is global.
Figure 2 shows the results of such an optimization for

�a ¼ �b � � ¼ 0:9 and�a � � ¼ 0:9,�b ¼ 1, i.e., 10%
losses in both arms and one arm, respectively (blue, solid
lines). In the following, we concentrate on these two

scenarios. The quantity we analyze is �’min � 1=
ffiffiffiffiffiffiffi
FQ

p
(or 1=

ffiffiffiffiffiffiffi
~FQ

q
) corresponding to the best measurement preci-

sion for fixed � [see Eq. (2)]. The lower and upper bounda-
ries of the shaded regions in Fig. 2 are the Heisenberg limit,
1=N, and a standard interferometric limit (SIL) [20] given

PRL 102, 040403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

30 JANUARY 2009

040403-2



by 1=
ffiffiffiffiffiffiffiffi
N�

p
(losses in both arms) and ð1þ ffiffiffiffi

�
p Þ=2 ffiffiffiffiffiffiffiffi

N�
p

(losses in one arm). Since the SIL is obtained by a classical
reference experiment (it scales like the SQL), �’min falling
into the shaded region implies an improvement over a
classical interferometer. For �b � 1, we used the state
which maximizes ~FQ to calculate FQ which differed by

no more than 0.45%. Because of Eq. (5), the ‘‘true’’
maximum has to lie in between these quantities, and its
deviation from ~FQ can be neglected on the scale given by

the difference of the SIL and the Heisenberg limit. As can
be seen in Figs. 2(a) and 2(b), it is obviously not possible to
reach the Heisenberg limit using input states with definite
photon number. However, we gain a significant improve-
ment over the SIL of up to 60% (losses in both arms) and
73% (losses in one arm). The precision for the N00N state
in the presence of losses [dashed lines in Figs. 2(a) and 2(b)

] is given by �’min ¼ 1=N�N=2 for losses in both arms and
ceases to be optimal for N > 7 photons. For losses in one

arm, we have �’min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ��N

p
=

ffiffiffi
2

p
N which is gener-

ally worse than the optimal state: Here, it is beneficial to
use N00N states with unequal amplitudes of the two
components. The best precision of such an ‘‘unbalanced’’

N00N state is given by ð1þ ��N=2Þ=2N which coincides
with the optimal state for N < 10. However, for larger

photon numbers, N00N states are not preferable; the pre-
cision gets even worse than the SIL.
Figure 3 shows that the optimal state for losses in both

arms has generally many nonzero components. Intuitively,
this is consistent with the idea that the loss of a photon
does not radically change the photon number distribution.
The structure of the optimal state is simpler for losses in
one arm. We therefore compare it to states with only two
nonzero components. The best precision obtained by these
states differs by no more than 3% from the optimal case for
the example shown in Fig. 2(b). They have the formffiffiffiffi
p

p jm;N �mi þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p jN; 0i and are thus similar to

the optimal state. This reflects the fact that it is both
beneficial to have a large photon number difference be-
tween arm a and b and have m> 0 so that loss of a
photon does not completely destroy the coherence. For
equal losses in both arms, the best two-component state
has approximately a symmetric form ðjm;N �mi þ
jN �m;miÞ= ffiffiffi

2
p

, but the corresponding precision deviates
significantly from the optimal state [up to 13% for the
example shown in Fig. 2(a)]. Here, states with more non-
zero components are more useful, e.g., a twin Fock state
[21] reducing the difference to 9%. Figure 2(c) and 2(d)
shows the best possible precision versus � for N ¼ 20. For

� * 0:95 � e�1=N , the optimal state, the optimal two-
component state, and the (unbalanced) N00N state are
identical.
We can also use different strategies to operate the inter-

ferometer: Since our resources are given by the total num-
ber of photons, N, we can, instead of employing a single
N00N state, use these photons to generateN=n n00n states
containing n � N photons each, i.e., we split up a ‘‘larger’’
N00N state into a number of ‘‘smaller’’ n00n states which
are sent successively through the interferometer.
Maximization over n (treated as a continuous parameter)
leads to the precision

�’min ¼

8>>>>><
>>>>>:

1þ ffiffiffi
~�

p
2

ffiffiffiffiffiffi
N�

p ; � � ��1
0

1þ
ffiffiffiffi
~�0

p
2

ffiffiffiffiffiffiffi
N ~�0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
�0j ln�j
ln�0

q
; ��1

0 <� � ��1=N
0

1þ~�N=2

2N�N=2 ; �> ��1=N
0

; (8)

where ~� ¼ ~�0 ¼ 1, �0 ¼ e and ~� ¼ �, ~�0 ¼ �0 � 4:386

FIG. 3 (color online). Coefficients xk ¼ j�kj2 of the optimal
state versus photon number N. (a) losses in both arms (�a ¼
�b ¼ � ¼ 0:9). (b) losses in one arm (�a ¼ � ¼ 0:9, �b ¼ 1).
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FIG. 2 (color online). Phase estimation precision �’min for
losses in both arms of the interferometer (a) versus photon
number N (�a ¼ �b ¼ � ¼ 0:9) and (c) versus transmissivity
�a ¼ �b ¼ � (N ¼ 20). The precision for losses in one arm,
i.e., �b ¼ 1, is shown in (b) versus N (�a ¼ � ¼ 0:9) and in
(d) versus �a ¼ � (N ¼ 20). Blue, solid line: Optimal state;
Red, dashed line: N00N state; Green, dashed-dotted line: N00N
chopping strategy; Shaded area: Region between Heisenberg
limit and classical limit (see text).
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for losses in both arms and one arm, respectively. In the
latter case, we use unbalanced n00n states. Examples for
this ‘‘chopping’’ strategy are given by the green, dashed-
dotted lines in Fig. 2. Note that in this case, the total
number of experimental runs is �N=n. The number of
photons ‘‘per run’’ is n ¼ 1, n ¼ ln�0=j ln�j and n ¼ N
for the three cases in Eq. (8). For sufficiently small total
photon numbers [cf. last line in Eq. (8)], it is not an
advantage to chop the N00N state. If N is larger, the
strategy does not improve the scaling with N compared
to the SIL (or SQL). Nonetheless, it is an improvement
over the SIL by a constant factor of approximately 2 (losses
in both arms) or 2.5 (losses in one arm) in the example
shown in Fig. 2, i.e., we need almost four (6.2) times less
photons to reach the same measurement precision.

The scaling of the precision of the optimal state with the
number of photons turns out not to behave exactly like a
power law. Therefore, we define a differential scaling SðNÞ
given by the local slope of �’minðNÞ on a log-log scale
obtained by a linear fit to the points corresponding to N �
4; . . . ; N þ 4. If �’min scales like a power law S would be
the constant power, e.g., S ¼ 0:5 for the SQL and S ¼ 1 for
the Heisenberg limit. Results are shown in Fig. 4. It is
clearly visible that the scaling of the optimal state drops
quickly, tending away from the Heisenberg limit towards
the SQL. Even for rather high transmissivity (green lines
correspond to 95%), a scaling of �0:61 (losses in both
arms) or �0:68 (losses in one arm) for N ¼ 70 is not
exceeded. Moreover, the scaling gets worse for higher
photon numbers. As yet, it remains an unresolved but
fascinating question if the scaling of the optimal states
eventually tend to the SQL for all �< 1 or asymptotically
reaches a value which beats the SQL proving a true quan-
tum scaling advantage in the presence of losses. Of course
these are rather theoretical considerations: In practice there
are restrictions to the size of the state (in terms of photon
number) which can be experimentally generated. So even
if the curves drop to 0:5 for N ! 1, interferometry using
‘‘smaller’’ quantum states has a significant advantage both

in terms of scaling and absolute precision over classical
interferometry. Particularly for very small numbers of
photons, (unbalanced) N00N states are optimal. Above
this threshold, the use of the more complex, optimized
states or one of our experimentally more feasible alterna-
tives is favorable.
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FIG. 4 (color online). Differential scaling of phase estimation
precision �’min with number of photons N for different trans-
missivities. (a) Optimal state for losses in both arms (�a ¼ �b �
�) and (b) for losses in one arm (�a � �, �b ¼ 1). The color
coding is the same in both plots.
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