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Abstract

Weak measurements are a new tool for characterizing pasttedl quantum systems during their evolution. Weak measure-
ment was originally formulated in terms of von Neumann interactions which are practically available for only the simplest
single-particle observables. Ineg present work, we extend and greatly simplifgaant, experimentally feasible, reformulation
of weak measurement for multiparticle observables [Phys. Ret 92 (2004) 130402]. We also shahat the resulting “joint
weak values” take on a particularly elegant form when expressed in terms of annihilation operators.
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Weak measurement was originally proposed by induced by the weak coupling is insufficient to dis-
Aharonov, Albert and Vaidman (AAVL] as an exten-  tinguish between the eigenvalues of the observable
sion to the standard von Neumann (“strong”) model in a single trial. While at first glance it may seem
of measurement. A weak measurement can be per-strange to desire a measurement technique that gives
formed by sufficiently reducing the coupling between less information than the standard one, recall that the
the measuring device and the measured system. In thisentanglement generated between the quantum system
case, the pointer of the measuring device begins in aand measurement pointer is responsible for collapse
state with enough position uncertainty that any shift of the wavefunction. Furthermore, if multiple trials are

performed on an identically-prepared ensemble of sys-
tems, one can measure the average shift of the pointer
mspondmg author. to any precision_—this average shift is called the we:_slk
E-mail address: |undeen@physics.utoronto.(;a_s. Lundeen). value. A SurprISIng characteristic of weak values is
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that they need not lie within the eigenvalue spectrum
of the observable and can even be compji4]. On
the other hand, an advantagf weak measurements is
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the particle. If such a measurement strategy were not
available, one would require a strong controllable in-
teraction between the quantum system and a separate

that they do not disturb the measured system nor any pointer system. This is typically far too technically dif-
other simultaneous weak measurements or subsequenticult to implement.

strong measurements, even in the case of noncommut-

In modern quantum mechanics, we are increasingly

ing observables. This makes weak measurements idealnterested in a different class of observables than in

for examining the properties and evolution of systems

the above example, in which only a single particle

before post-selection and might enable the study of is involved. Often, one would like to measure corre-
new types of observables. Weak measurements haveations between observables of distinct particles, like

been used to simplify the calculation of optical net-

5155, the spin of particle one times the spin of par-

works in the presence of polarization-mode dispersion ticle two. Moreover, any experiment that utilizes or

[5], applied to slow- and fast-light effects in birefrin-
gent photonic crystal§6], and bring a new, unify-
ing perspective to the tunneling-time controvefgy

8]. Hardy’s paradox, introduced in RgB], was an-
alyzed in terms of weak values [d0]. In Ref.[11],
weak values were used to physically explain the re-
sults of the cavity QED experiment described12].
The opposing views expressed in R¢i3,14]on the
role of which-path information and the Heisenberg un-

directly measures properties of entanglement is based
on such observables and so, much of quantum infor-
mation and quantum optics deal with these composite
or joint observables. The exciting results and com-
plex, rich range of features discovered by studies of
entanglement suggests that weak measurement of joint
observables should also produce valuable and interest-
ing results. In fact, there edady exist a few theoret-
ical ideas for weak measurements that center around

certainty principle in the double-slit experiment are joint observables, such as Hardy’s paraftd], non-

reconciled with the use of weak values[itb]. Weak

locality of a single particlg8], and extensions of the

measurement can be considered the best estimate of amuantum box problerfi9,20] We call the weak value

observable in a pre- and post-selected sygteh
The von Neumann interéion was originally used

of a joint observable the “joint weak value”. If the
composite observable is a productofsingle-particle

to model standard quantum measurement by mathe-observables then the weak value is called tiveh-

matically describing the coupling between the mea-
sured system and the measurement poifitél. The
interaction couples an observableof the guantum
system to the momentui of the pointer,

H=gAP, (1)

where g is the coupling constant which is assumed
to be real to keep{ Hermitian. SinceA and P act

order joint weak value”.

Joint observables are extremely difficult to measure
directly with either strong or weak types of measure-
ment. The difficulty lies in the fact that the neces-
sary von Neumann interaction couples two separate
observables, and hence particles, to a single pointer.
One, therefore, can no longer use the extra degree
of freedom on one of the particles as the pointer

in different Hilbert spaces we can safely assume they and so, one requires multiparticle interactions. An ap-

commute. This interaction would be difficult to imple-
ment were it not for the fact that typically the mea-

proach using multiparticle interactions was outlined in
a proposal for a weak measurement experiment with

sured system itself is used as part of the measurementons but so far there have been no experimental weak

device. When measuriné of a particle an indepen-

measurements of joint observabl@4]. On the other

dent degree of freedom of the particle can be used ashand, experimental strong measurements of joint ob-

the pointer. For example, a birefringent crystal can be
oriented so that it will displace the position of photon

servables are feasible dileven commonplace. This is
made possible by employing a different measurement

by an amount that depends on the photon’s polariza- strategy. Instead of measuring the joint observable di-

tion [18]. Here, A is the polarization observable and
the pointer is the positioof the photon. Another ex-
ample is the Stern—Gerlach apparatus, wheiie the

rectly, each single-particle observable is measured si-
multaneously but separately. For example, instead of
measuringS1S2 directly we can measurg; and S

spin of the particle and the pointer is the momentum of separately and then multiply the results trial by trial.
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If one wants to strongly measure the joint observable where o is the rms width of|¢(x)|2. In most ex-
A1As---Ay = M, instead of using the multiparticle  periments, quantum mechanical systems are initially
von Neumann Hamiltoniafi{ = gM P, the general prepared in a known initial staté). Since this prepa-
strategy is to simultaneously apply standard single-  ration usually involves measuring an ensemble of sys-

particle von Neumann interaction Hamiltonians, tems and selecting the subensemble with the correct
A A outcome, this is called pre-selection. For a strong mea-
H=g1A1P1+ g242P + - surement, the von Neumann interaction with a pre-
N I selected system state shifts the mean position of the

= gjA;P;. (2)  pointer(X) by gr(I|A|I) and leaves ) unchanged.
j=1 AAV considered the case where we further restrict our-

Given that we can already perform each of the single- selves to the subensemble of system states that are
particle Hamiltonians, it is straightforward to imple- found to be in|F) after the measurement, a procedure
ment the total Hamiltonian. This strategy allows one to called post-selection. A weak measurement performed
make projective measurementsi@fwhich is all that between the pre- and post-selection can result in very
is required to measure the expectation valug/of different expectation values than in strong measure-
N A A N A A N ments, as we will see.

(M) =(A142--- AN) (X1 X2+~ XN), ®) After the pointer weakly interacts with the initial
where X; is the position operator of the pointer and system-pointer state(0)) = |1)|¢) the state evolves
provided allA; commute. In other words, the expec- to

tation value of¥ is related to the correlation between

—iHt
the positions of allV pointers. [y (1) = eXp<T> 1))
In two earlier works, an analogous strategy was )
applied to weak measuremerj2,23] The Hamil- — (1_ iHt — .. .>|1)|¢)
tonian in Eq.(2) is utilized in the weak regime to h
create correlations in the deflections of thepointers _ gt~ -
proportional to the weak value. Specifically, tNeh- =1Dlo) - 7A|I)P|¢> o ©)

order joint weak value was related to two correlations
between allN pointer deflectiong&nd a complicated
combination of lower-ordejoint weak values. In this
work, we show that theVth-order joint weak value (F| exp(_iH[)|1>|¢>

takes on an elegant and simple form closely related A

to the strong measurement formula in Eg) when igt A

expressed entirely in terms af-particle correlations. = (FI)¢) — -~ (FIA)P|¢) —---. (6)
This new and simplified form lends itself to a new way ) _ ) _

of thinking about single and joint weak measurements This leaves the state of pointer after the interaction and

in terms of expectation values of products of annihila- POSt-selection. In the limit of an ideal weak measure-
tion operators. ment,gr — 0, [(F|I)|* = ProlyyccesdS the probability

We begin by deriving AAVs formula for the weak the post-selection succeeld§. If we renormalize the
value of a single-particle observable. AAV based weak State and then truncate the amplitude of each term to
measurement on the weak limit of the standard ap- loWest order ingr we get
proach to measurement. &gfically, they use the igt (FIA|I) -
von Neumann interaction in Eql), which we as- lpri)=1p) — W FID Plp)y —---, @)
sume to be constant over some interaction titriehe
measurement pointer is initially in a Gaussian wave- which is just equivalent to dividing by(F|/) =

We project out the part of the state that is post-selected
in state| F),

function centered at zero, +/Probsyccess The subscripifi, corresponding to final
1/2 5 state|F) and initial state|7), labels the final pointer
(x|¢) = p(x) = <_) exp(— x_) (4) state, with which we can nowalculate the expectation
V2ro 402 value of X of the pointer. The terms which contain an
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expectation value of an odd number of operators go value as Re{f7%) [11]. Nonetheless, we will show

to zero since the pointer is initially an even function
about zero. To first order igz, the remaining terms
give us

(X) i = (il X9 1)

gt o ((FIAIDY, os sol
- Re( i )<¢fl|<XP PX)bsi)
£ & (FADY R 4 B Ryl
7 (FII) fi fi
(FIA|I)

—8 Re( (FIT) ) ®)

Here, () r; is used to signify the expectation value
of a pointer observable only in the subensemble of
measured systems that start in stgteand are later
post-selected in the staté’). Similarly, the momen-
tum expectation value is given by

(P)yi=(¢sil Plosi) )
- _;g[ Re((ﬂ?})[>>(¢fil(132 — P?)¢i)
+ %[ Im((ﬂﬂ)”)@fil(ﬁz +P?)l¢ i)
g1

The shifts from zero in both th& and P expecta-
tion values are proportional to the real and imaginary
parts, respectively, of the weak valyé)y which is
defined as

(FIA|I)
(FII)

In fact, AAV showed that for sufficiently weak cou-
pling (x|¢;), the final pointer state, will be

(Ayy =

(10)

(V21 o) Y2 exp(—(x — (A)w)?/40?),

unchanged except for a shift by the weak value.

It has been argued that it is the backaction of the
measurement on the measured system that leads to
finite Im(A)w and thus a non-zer@P) s; [7]. In ad-
dition, as the measurement becomes weaﬁey,- be-
comes more and more difficult to determing) ;; de-
creases withgr /o2 whereas the width\ P decreases

that (P) s; should not be interpreted as an insignifi-
cant artifact of the weak measurement procedure and
has an integral role in measuring theh-order joint
weak value.

One can express the full weak value in terms of the
two expectation values of the pointer,

(Ayw =Re(A)w +ilm(A)w
A o
X+i—

20< 1 A>
= P) .
h .fl'

gt
In their derivation of weak values, AAV made the nat-
ural choice of a Gaussian for the initial pointer state,
as do we. This state also happens to be the ground
state|0) of a harmonic oscillator with masa and
frequencyw. For illustration, if one reparameterizes
the width of the Gaussian in terms afw such that
o = +/h/2mw it becomes apparent that the operator
in the expectation value in E€L1)is just the familiar
lowering operator,

A ma))z_’_. 1 P
“=\on "\ 2men

The operator in Eq11)will transform the pointer just

as the lowering operator does, even though the pointer
is not actually in a harmonic potential. This fact will
simplify some of the following calculations. Further-
more, now the weak value can be re-expressed as:

20
= gt (a>f1~
To our knowledge, this is the first time in the lit-
erature that this simple but important relationship be-
tween the annihilation operator and weak measure-
ment has been described. The reason the annihilation
operator is related to the weak value can be understood
as follows. When the coupling is sufficiently weak, the
expansion in Eq(5) shows that the largest pointer am-
plitude is left unchanged in the ground state. The inter-
action Hamiltonian shifts some of the pointer state into
the first excited state by creating a small amplitude,

z?)roportional togr A, for the|1) state. If we restrict our-
selves to the post-selected subensemble, as iG7Eg.
then this small amplitude changes to be proportional
to g1(A)w. The annihilation operator removes the part
of the state that is left unchanged by the coupling,

(11)

(12)

~

(A)w (13)

as Jo. Some have gone as far as to define the weak leaving only the shifted component. In other words,
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the annihilation operator isolates only that part of the of the N pointers at a time. Simultaneous shifts of
pointer state that is changed by the interaction. multiple pointers come from higher-order terms in the
We now move on to a derivation @fth-order joint propagator. We are particularly interested in #tigh
weak values. In this section, we combine the strategy term in the expansion,
outlined in the introduction for measuring joint ob- N
servables with the use of the annihilation operatorto 1 [ —i'Ht N far N At A
extract the weak value. As in previous works, to mea- ﬁ( 7 ) “ Nl 2y ZAJ( — )
sure the operata/ =[]}_; A; we applyN separate J=1
von Neumann interactions coupling eathto its own
pointer, as in Eq(2) [22,23] To simplify the expres-
sions to come we set ayi; to be equal and rewrite
the momentum operato#% in terms of the respective
raising and lowering operatoré &'

17
This term is the lowest-order one in the expansion
which can simultaneously transfer all pointers into
the first excited state (e.gl11213- - - 1y)). This state,
which we label a$1)®¥, is created when each term in
, andajj, foreach of  the above sum supplies one raising operator. The terms

the pointers, in the sum can contribute th€ distinct raising oper-
ators in any order and so the portion of E#7) that
_ 2_8 Z a —a)). (14) creates th¢1)®V state is equal to
Jj=1 1 gt A At
——piAra , 18
Now we requireN different pointers, all beginning ~ N! 2060{ k}N (18)
in an initial state defined by E¢4). The total initial wherep{Li}y denotes the sum of aN'! orderings of

pointer state can be described by the ground state of  the set ofN operators(Z;}. Note that these different
harmonic oscillators: orderings are only distinct when the operators do not
commute. The remaining portions of Ed.7) create
= 1_[ lp;) =10V, (15) states where at least one pointer is left in the initial
i state (e.g.]210213--- 1y)). Projecting onta F'| com-

Continuing, using the number-state notation to de- pletes the post-selection and leaves us with,

scribe the pointer, we calculate the state of the com- —iHt
P F| exp( )|O>®N

bined system after the interaction Hamiltonian is ap-
plied,

N
gt .
—iMt = 0)®N(F|I) + 5= > "(FIA;I1)|1)) +
|®)|1) — exp(—)|0>®N|1> 20 ;
N
it oN gty 1 A ®N
= ST — | —(Fl|p{A N1
(1 h + )|0> |1) +<20> N!< I{ANIT) 1) +
. (19)
= <1+ 8t Aj(&;—aj) +,,,)|O)®N|1) We renormalize the resultin_gl—pointer state|® ;)
o3 : and then truncate the amplitude of each term at the
N lowest non-zero order igt,
t .
—10%¥ )+ LN A + -, (16 N g
[0)=7] >+20; SN+, (16) 1) — [0 g—tZ<F|Aj|I)|1-)+
= fi 20 & (FI,

where[1;) is the state where thgth pointer is in the = )
first-excited state and all the other pointers are in the L8 Ni (Flp{An|1)|1)EY
ground state (e.g|011203---0y)). Here, we have ex- 20 ) N! (FI|I)
panded the state in powers gf. Eq. (16) shows that (20)

to first order, the interaction Hamiltonian coupling the This is equivalent to dividing byF|I), the renormal-
measuring device to the system can displace only oneization constant in the limit of no coupling. In analogy
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with Eqg. (13), we now wish to take the expectation
value of the product of the annihilation operators for
all N pointers,

N
0= Haj.
j=1

In Eq. (20), the |1)®" state is the Iowe§t-order term
that does not go to zero when acted on(ythis term
N R
1 (Flp{AjInlT) R

becomes,
gt
20 N! (F|I)

+ 0((g[)N+l).

Clearly, to lowest non-zero order the expectation value
then becomes,

(0) i

(21)

0@

(22)

(@i 01 i)

_w(gJNijﬂpMAMD
- 20 ] NI (F|I)
(g)ijﬂ@MAMU
20 ’

0)

N! (F|I) (23)
The next lowest-order term in the expectation value
corresponds to any of th¥ pointers undergoing an
extra pair of transitions (i.e., a pointer is raised2p
and subsequently lowered back|fp). Consequently

it will be reduced in size by a factor of(%)2 com-
pared to the lowest-order term. Using H@3) the
Nth-order joint weak value can now be expressed in
the simple formula

1) (3)-

j=1

1

m<@{Aj}N>W =< (24)

It is often the case that each operafor acts on a
different particle, ensuring that aﬂj commute. This
allows the further simplification of th&'th-order joint
weak value to

N R N 20 N
<. A,»> =<1‘[aj> .(E) : (25)

j=1 w j=1 fi

For commuting observables, the magnitude of the si-
multaneous shift in theV pointers that results from
concurrent kicks from allV terms in the Hamiltonian

in Eq. (2) is proportional to the shift in one pointer

J.S Lundeen, K.J. Resch / Physics Letters A 334 (2005) 337-344

created by a single von Nenann Hamiltonian for
measuring operatdi . The role of the annihilation op-
erators is to isolate this simultaneous pointer shift from
the total uncorrelated shifts of thé pointers and thus
duplicate the action of{ = gM P, without the need
for multiparticle interactions.

Since Eq(25) requires the measurement of the an-
nihilation operator, which is not Hermitian, one might
think the expression is, in principle, unmeasurable. In
fact, if one expands the annihilation operator in terms
of X and P for each pointer then one is simply left
with expectation values of products &f or P for
each pointer. One then measuie# one ensemble of
pointers and? in an identically-prepared ensemble.

The expression in Eq25) is the central result of
this work. As in previous papers, this result shows how
one can practically measure a joint weak value even
without the multiparticle iteractions the AAV method
requires[22,23] However, this expression is much
more elegant and it makes it clear that the annihilation
operator plays a key role in joint weak measurements.
Specifically, with the use of the annihilation operator,
the similarity to the strong measurement expectation
value in Eq.(3) is apparent. For strong measurement,
the equivalent expectation value to tNéh-order joint
weak value is

N R N R 1 N
< A,->=<]‘[X,-><E> . (26)

J=1 Jj=1

The similarity is striking and makes a good case for the
use of the annihilation operator in the understanding of
weak values.

Let us compare EQq(25) to the previous results
for the Nth-order joint weak valug23]. In the pre-
vious paper, it was expressed recursively in terms of
two Nth-order correlations between the pointers and
to N different joint weak values of orde¥ — 1. Uti-
lizing this recursive formula, th&’th-order joint weak
value can be expressed purely in terms of the expec-
tation value of position and momentum correlations.
This expression includes™2! — 2 distinct correla-
tions of various orders, although most will be close
to the N /2 order as the number of distinct expectation
values at each order followsetbinomial distribution.

In comparison, Eq(25) relates theNth-order joint
weak value to 2 correlations in the positions and mo-
menta of allN pointers and so requires roughly half
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the number of expectation values as the final result whereS’]fz is the z-basis lowering operator for thgh

from the previous paper (but of higher order). pointer and alld; are assumed to commute. An im-
As a specific example of the use of H@5), the  ortant advantage of using spin is the absence of un-
weak value of the product of two spin components gqyal coefficients in the expression for the lowering
S1.:$2y would be, operator. This puts the shifts in the pointer observ-
25\ 2 able and its conjugate on equal footing. Using such
(81 S2y)w = <_0> (@182) fi a pointer means that the physical shift in the conju-
8t gate observable does not become smaller as the mea-
20\?[/ 1 O A surement becomes weaker. Expectation values are also
= ot gxl +tioP p_articularly easy to measure for spins (and polariza-
tions), especially spin/2 systems since there are only
)>fi

X (if(z +iZ B (27)  two basis states which need to be projected onto. For
20 h instance, theVth-order joint weak value would only
The real and imaginary parts of the weak value are require ¥ measurements in total N spin 1/2 point-
then ers were used.
Inthe present work, we have greatly simplified a re-
Re(S1x S2y)w cent extension of weak measurement which makes the
1\2/ . . 4ot . . experimental investigation of composite, or joint ob-
(—) ( 1X2) fi — —2<P1P2)fi>, (28) servables possiblR2,23] We have shown that when
8! h single and joint weak values are expressed as expec-
IM({S1x S2y)w tation values of annihilation operators, they take on
202/ 1\?, . . A a surprisingly elegant form very similar to that seen
= 7(5) ((X1P2) pi + (PLX2) fi). (29) in standard strong measurement. This form is easily
. . .. generalized to any measurement device in which the
The importance of the pointer momentum shift is jniiar pointer state is the eigenstate of an appropriate
demonstrated in the above example. With our mea- |, yering operator. With the extension, the weak mea-
surement technique even the real part of weak value g, rement of joint observables only requires the same
is related to the pointers’ momentg, andPz. INgen- 4509415 that one would need to weakly measure each
eral, the momentum and position observables for €ach ¢ the component observables separately. Joint observ-
of the N pointers will appear in the expression forthe  pjeq are central to the detection and utilization of
real part of theVth-order joint weak value. _entanglementin multiparticle systems. The weak mea-
Note that like single weakmeasurements, this g, -ement of these observables should be particularly
method for measuring th¥'th-order joint weak value 50| for investigating post-selected systems such as
is not limited to the particular interaction or pointer  J<a that have been used produce novel multiparti-

used in our measurement modeH]. For example, g entangled states or those that implement quantum
one can perform a derivation very similar to the one logic gateg25,26]

presented here where a spin, as opposed to position,
pointer is used. For a spin pointer, the Hamiltonian
would beH = —gAS, =igA(S} — S7)/2, whereS;t

and S‘f are the raising and lowering operators for the
S; basis. The initial pointer state would be the lowest
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