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Abstract

Weak measurements are a new tool for characterizing post-selected quantum systems during their evolution. Weak meas
ment was originally formulated in terms of von Neumann interactions which are practically available for only the s
single-particle observables. In the present work, we extend and greatly simplify a recent, experimentally feasible, reformulati
of weak measurement for multiparticle observables [Phys. Rev. Lett. 92 (2004) 130402]. We also show that the resulting “joint
weak values” take on a particularly elegant form when expressed in terms of annihilation operators.
 2004 Elsevier B.V. All rights reserved.
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Weak measurement was originally proposed
Aharonov, Albert and Vaidman (AAV)[1] as an exten
sion to the standard von Neumann (“strong”) mo
of measurement. A weak measurement can be
formed by sufficiently reducing the coupling betwe
the measuring device and the measured system. In
case, the pointer of the measuring device begins
state with enough position uncertainty that any s
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induced by the weak coupling is insufficient to d
tinguish between the eigenvalues of the observ
in a single trial. While at first glance it may see
strange to desire a measurement technique that g
less information than the standard one, recall that
entanglement generated between the quantum sy
and measurement pointer is responsible for colla
of the wavefunction. Furthermore, if multiple trials a
performed on an identically-prepared ensemble of s
tems, one can measure the average shift of the po
to any precision—this average shift is called the we
value. A surprising characteristic of weak values
.
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that they need not lie within the eigenvalue spectr
of the observable and can even be complex[2–4]. On
the other hand, an advantage of weak measurements
that they do not disturb the measured system nor
other simultaneous weak measurements or subseq
strong measurements, even in the case of noncom
ing observables. This makes weak measurements
for examining the properties and evolution of syste
before post-selection and might enable the study
new types of observables. Weak measurements
been used to simplify the calculation of optical n
works in the presence of polarization-mode dispers
[5], applied to slow- and fast-light effects in birefri
gent photonic crystals[6], and bring a new, unify
ing perspective to the tunneling-time controversy[7,
8]. Hardy’s paradox, introduced in Ref.[9], was an-
alyzed in terms of weak values in[10]. In Ref. [11],
weak values were used to physically explain the
sults of the cavity QED experiment described in[12].
The opposing views expressed in Refs.[13,14]on the
role of which-path information and the Heisenberg u
certainty principle in the double-slit experiment a
reconciled with the use of weak values in[15]. Weak
measurement can be considered the best estimate
observable in a pre- and post-selected system[16].

The von Neumann interaction was originally used
to model standard quantum measurement by ma
matically describing the coupling between the m
sured system and the measurement pointer[17]. The
interaction couples an observablêA of the quantum
system to the momentum̂P of the pointer,

(1)H = gÂP̂ ,

whereg is the coupling constant which is assum
to be real to keepH Hermitian. SinceÂ and P̂ act
in different Hilbert spaces we can safely assume t
commute. This interaction would be difficult to impl
ment were it not for the fact that typically the me
sured system itself is used as part of the measurem
device. When measurinĝA of a particle an indepen
dent degree of freedom of the particle can be use
the pointer. For example, a birefringent crystal can
oriented so that it will displace the position of phot
by an amount that depends on the photon’s polar
tion [18]. Here,Â is the polarization observable an
the pointer is the position of the photon. Another ex
ample is the Stern–Gerlach apparatus, whereÂ is the
spin of the particle and the pointer is the momentum
t
-
l

n

t

the particle. If such a measurement strategy were
available, one would require a strong controllable
teraction between the quantum system and a sep
pointer system. This is typically far too technically d
ficult to implement.

In modern quantum mechanics, we are increasin
interested in a different class of observables than
the above example, in which only a single parti
is involved. Often, one would like to measure cor
lations between observables of distinct particles,
Ŝ1Ŝ2, the spin of particle one times the spin of p
ticle two. Moreover, any experiment that utilizes
directly measures properties of entanglement is ba
on such observables and so, much of quantum in
mation and quantum optics deal with these compo
or joint observables. The exciting results and co
plex, rich range of features discovered by studies
entanglement suggests that weak measurement of
observables should also produce valuable and inte
ing results. In fact, there already exist a few theore
ical ideas for weak measurements that center aro
joint observables, such as Hardy’s paradox[10], non-
locality of a single particle[8], and extensions of th
quantum box problem[19,20]. We call the weak value
of a joint observable the “joint weak value”. If th
composite observable is a product ofN single-particle
observables then the weak value is called the “N th-
order joint weak value”.

Joint observables are extremely difficult to meas
directly with either strong or weak types of measu
ment. The difficulty lies in the fact that the nece
sary von Neumann interaction couples two sepa
observables, and hence particles, to a single poi
One, therefore, can no longer use the extra de
of freedom on one of the particles as the poin
and so, one requires multiparticle interactions. An
proach using multiparticle interactions was outlined
a proposal for a weak measurement experiment w
ions but so far there have been no experimental w
measurements of joint observables[21]. On the other
hand, experimental strong measurements of joint
servables are feasible and even commonplace. This
made possible by employing a different measurem
strategy. Instead of measuring the joint observable
rectly, each single-particle observable is measured
multaneously but separately. For example, instea
measuringŜ1Ŝ2 directly we can measurêS1 and Ŝ2
separately and then multiply the results trial by tr
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If one wants to strongly measure the joint observa
Â1Â2 · · · ÂN = M̂ , instead of using the multiparticl
von Neumann HamiltonianH = gM̂P̂ , the genera
strategy is to simultaneously applyN standard single
particle von Neumann interaction Hamiltonians,

H = g1Â1P̂1 + g2Â2P̂2 + · · ·

(2)=
N∑

j=1

gj Âj P̂j .

Given that we can already perform each of the sing
particle Hamiltonians, it is straightforward to impl
ment the total Hamiltonian. This strategy allows one
make projective measurements ofM̂ which is all that
is required to measure the expectation value ofM̂ ,

(3)〈M̂〉 = 〈Â1Â2 · · · ÂN 〉 ∝ 〈X̂1X̂2 · · · X̂N 〉,
whereX̂i is the position operator of the pointer a
provided allÂi commute. In other words, the expe
tation value ofM̂ is related to the correlation betwee
the positions of allN pointers.

In two earlier works, an analogous strategy w
applied to weak measurements[22,23]. The Hamil-
tonian in Eq.(2) is utilized in the weak regime t
create correlations in the deflections of theN pointers
proportional to the weak value. Specifically, theN th-
order joint weak value was related to two correlatio
between allN pointer deflectionsand a complicated
combination of lower-orderjoint weak values. In this
work, we show that theN th-order joint weak value
takes on an elegant and simple form closely rela
to the strong measurement formula in Eq.(3) when
expressed entirely in terms ofN -particle correlations
This new and simplified form lends itself to a new w
of thinking about single and joint weak measureme
in terms of expectation values of products of annih
tion operators.

We begin by deriving AAVs formula for the wea
value of a single-particle observable. AAV based we
measurement on the weak limit of the standard
proach to measurement. Specifically, they use the
von Neumann interaction in Eq.(1), which we as-
sume to be constant over some interaction timet . The
measurement pointer is initially in a Gaussian wa
function centered at zero,

(4)〈x|φ〉 = φ(x) =
(

1√
2πσ

)1/2

exp

(
− x2

4σ 2

)
,

where σ is the rms width of|φ(x)|2. In most ex-
periments, quantum mechanical systems are initi
prepared in a known initial state|I 〉. Since this prepa
ration usually involves measuring an ensemble of s
tems and selecting the subensemble with the cor
outcome, this is called pre-selection. For a strong m
surement, the von Neumann interaction with a p
selected system state shifts the mean position of
pointer〈X̂〉 by gt〈I |Â|I 〉 and leaves〈P̂ 〉 unchanged
AAV considered the case where we further restrict o
selves to the subensemble of system states tha
found to be in|F 〉 after the measurement, a proced
called post-selection. A weak measurement perform
between the pre- and post-selection can result in v
different expectation values than in strong measu
ments, as we will see.

After the pointer weakly interacts with the initia
system-pointer state|ψ(0)〉 = |I 〉|φ〉 the state evolve
to∣∣ψ(t)

〉 = exp

(−iHt

h̄

)
|I 〉|φ〉

=
(

1− iHt

h̄
− · · ·

)
|I 〉|φ〉

(5)= |I 〉|φ〉 − igt

h̄
Â|I 〉P̂ |φ〉 − · · · .

We project out the part of the state that is post-sele
in state|F 〉,

〈F |exp

(−iHt

h̄

)
|I 〉|φ〉

(6)= 〈F |I 〉|φ〉 − igt

h̄
〈F |Â|I 〉P̂ |φ〉 − · · · .

This leaves the state of pointer after the interaction
post-selection. In the limit of an ideal weak measu
ment,gt → 0, |〈F |I 〉|2 = Probsuccessis the probability
the post-selection succeeds[7]. If we renormalize the
state and then truncate the amplitude of each term
lowest order ingt we get

(7)|φf i〉 = |φ〉 − igt

h̄

〈F |Â|I 〉
〈F |I 〉 P̂ |φ〉 − · · · ,

which is just equivalent to dividing by〈F |I 〉 =√
Probsuccess. The subscriptf i, corresponding to fina

state|F 〉 and initial state|I 〉, labels the final pointe
state, with which we can nowcalculate the expectatio
value ofX̂ of the pointer. The terms which contain a
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expectation value of an odd number of operators
to zero since the pointer is initially an even functi
about zero. To first order ingt , the remaining terms
give us

〈X̂〉f i = 〈φf i |X̂|φf i〉

= −igt

h̄
Re

( 〈F |Â|I 〉
〈F |I 〉

)
〈φf i |(X̂P̂ − P̂ X̂)|φf i〉

+ gt

h̄
Im

( 〈F |Â|I 〉
〈F |I 〉

)
〈φf i |(X̂P̂ + P̂ X̂)|φf i〉

(8)= gt Re

( 〈F |Â|I 〉
〈F |I 〉

)
.

Here, 〈 〉f i is used to signify the expectation valu
of a pointer observable only in the subensemble
measured systems that start in state|I 〉 and are later
post-selected in the state|F 〉. Similarly, the momen-
tum expectation value is given by

〈P̂ 〉f i = 〈φf i |P̂ |φf i〉

= −igt

h̄
Re

( 〈F |Â|I 〉
〈F |I 〉

)
〈φf i |

(
P̂ 2 − P̂ 2)|φf i〉

+ gt

h̄
Im

( 〈F |Â|I 〉
〈F |I 〉

)
〈φf i |

(
P̂ 2 + P̂ 2)|φf i〉

(9)= h̄gt

2σ 2
Im

( 〈F |Â|I 〉
〈F |I 〉

)
.

The shifts from zero in both thêX andP̂ expecta-
tion values are proportional to the real and imagin
parts, respectively, of the weak value〈Â〉W which is
defined as

(10)〈Â〉W ≡ 〈F |Â|I 〉
〈F |I 〉 .

In fact, AAV showed that for sufficiently weak cou
pling 〈x|φf i〉, the final pointer state, will be

(
√

2π σ)−1/2 exp
(−(x − 〈Â〉W )2/4σ 2),

unchanged except for a shift by the weak value.
It has been argued that it is the backaction of

measurement on the measured system that leads
finite Im〈Â〉W and thus a non-zero〈P̂ 〉f i [7]. In ad-
dition, as the measurement becomes weaker〈P̂ 〉f i be-
comes more and more difficult to determine;〈P̂ 〉f i de-
creases withgt/σ 2 whereas the width�P̂ decreases
as 1/σ . Some have gone as far as to define the w
a

value as Re( 〈F |Â|I 〉
〈F |I 〉 ) [11]. Nonetheless, we will show

that 〈P̂ 〉f i should not be interpreted as an insign
cant artifact of the weak measurement procedure
has an integral role in measuring theN th-order joint
weak value.

One can express the full weak value in terms of
two expectation values of the pointer,

〈Â〉W = Re〈Â〉W + i Im〈Â〉W
(11)= 2σ

gt

〈
1

2σ
X̂ + i

σ

h̄
P̂

〉
f i

.

In their derivation of weak values, AAV made the n
ural choice of a Gaussian for the initial pointer sta
as do we. This state also happens to be the gro
state |0〉 of a harmonic oscillator with massm and
frequencyω. For illustration, if one reparameteriz
the width of the Gaussian in terms ofmω such that
σ = √

h̄/2mω it becomes apparent that the opera
in the expectation value in Eq.(11) is just the familiar
lowering operator,

(12)â =
√

mω

2h̄
X̂ + i

√
1

2mωh̄
P̂ .

The operator in Eq.(11)will transform the pointer jus
as the lowering operator does, even though the po
is not actually in a harmonic potential. This fact w
simplify some of the following calculations. Furthe
more, now the weak value can be re-expressed as

(13)〈Â〉W = 2σ

gt
〈â〉f i .

To our knowledge, this is the first time in the li
erature that this simple but important relationship
tween the annihilation operator and weak meas
ment has been described. The reason the annihila
operator is related to the weak value can be unders
as follows. When the coupling is sufficiently weak, t
expansion in Eq.(5) shows that the largest pointer am
plitude is left unchanged in the ground state. The in
action Hamiltonian shifts some of the pointer state i
the first excited state by creating a small amplitu
proportional togtÂ, for the|1〉 state. If we restrict our
selves to the post-selected subensemble, as in Eq(7),
then this small amplitude changes to be proportio
to gt〈Â〉W . The annihilation operator removes the p
of the state that is left unchanged by the coupli
leaving only the shifted component. In other wor
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the annihilation operator isolates only that part of
pointer state that is changed by the interaction.

We now move on to a derivation ofN th-order joint
weak values. In this section, we combine the strat
outlined in the introduction for measuring joint o
servables with the use of the annihilation operato
extract the weak value. As in previous works, to m
sure the operator̂M = ∏N

j=1 Âj we applyN separate

von Neumann interactions coupling eachÂj to its own
pointer, as in Eq.(2) [22,23]. To simplify the expres-
sions to come we set allgj to be equal and rewrit
the momentum operatorŝPj in terms of the respectiv

raising and lowering operators,â
†
j andâj , for each of

the pointers,

(14)H = i
h̄g

2σ

N∑
j=1

Âj

(
â

†
j − âj

)
.

Now we requireN different pointers, all beginnin
in an initial state defined by Eq.(4). The total initial
pointer state can be described by the ground stateN
harmonic oscillators:

(15)|Φ〉 =
N∏

j=1

|φj 〉 = |0〉⊗N .

Continuing, using the number-state notation to
scribe the pointer, we calculate the state of the co
bined system after the interaction Hamiltonian is
plied,

|Φ〉|I 〉 → exp

(−iHt

h̄

)
|0〉⊗N |I 〉

=
(

1− iHt

h̄
+ · · ·

)
|0〉⊗N |I 〉

=
(

1+ gt

2σ

N∑
j=1

Âj

(
â

†
j − âj

) + · · ·
)

|0〉⊗N |I 〉

(16)= |0〉⊗N |I 〉 + gt

2σ

N∑
j=1

Âj |1j 〉|I 〉 + · · · ,

where|1j 〉 is the state where thej th pointer is in the
first-excited state and all the other pointers are in
ground state (e.g.,|011203 · · ·0N 〉). Here, we have ex
panded the state in powers ofgt . Eq. (16) shows that
to first order, the interaction Hamiltonian coupling t
measuring device to the system can displace only
of the N pointers at a time. Simultaneous shifts
multiple pointers come from higher-order terms in t
propagator. We are particularly interested in theN th
term in the expansion,

(17)

1

N !
(−iHt

h̄

)N

= 1

N !

(
gt

2σ

N∑
j=1

Âj

(
â

†
k − âk

))N

.

This term is the lowest-order one in the expans
which can simultaneously transfer allN pointers into
the first excited state (e.g.,|111213 · · ·1N 〉). This state,
which we label as|1〉⊗N , is created when each term
the above sum supplies one raising operator. The te
in the sum can contribute theN distinct raising oper-
ators in any order and so the portion of Eq.(17) that
creates the|1〉⊗N state is equal to

(18)
1

N !
gt

2σ
℘

{
Âkâ

†
k

}
N

,

where℘{L̂k}N denotes the sum of allN ! orderings of
the set ofN operators{L̂k}. Note that these differen
orderings are only distinct when the operators do
commute. The remaining portions of Eq.(17) create
states where at least one pointer is left in the ini
state (e.g.,|210213 · · ·1N 〉). Projecting onto〈F | com-
pletes the post-selection and leaves us with,

〈F |exp

(−iHt

h̄

)
|0〉⊗N

= |0〉⊗N 〈F |I 〉 + gt

2σ

N∑
j=1

〈F |Âj |I 〉|1j 〉 + · · ·

(19)

+
(

gt

2σ

)N 1

N ! 〈F |℘{Âk}N |I 〉|1〉⊗N + · · · .

We renormalize the resultingN -pointer state|Φfi〉
and then truncate the amplitude of each term at
lowest non-zero order ingt ,

|Φf i〉 = |0〉⊗N + gt

2σ

N∑
j=1

〈F |Âj |I 〉
〈F |I 〉 |1j 〉 + · · ·

(20)

+
(

gt

2σ

)N 1

N !
〈F |℘{Âk}N |I 〉|1〉⊗N

〈F |I 〉 + · · · .

This is equivalent to dividing by〈F |I 〉, the renormal-
ization constant in the limit of no coupling. In analo
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with Eq. (13), we now wish to take the expectatio
value of the product of the annihilation operators
all N pointers,

(21)Ô ≡
N∏

j=1

âj .

In Eq. (20), the |1〉⊗N state is the lowest-order ter
that does not go to zero when acted on byÔ; this term
becomes,

Ô|Φf i〉 =
(

gt

2σ

)N 1

N !
〈F |℘{Âj }N |I 〉

〈F |I 〉 |0〉⊗N

(22)+ O
(
(gt)N+1).

Clearly, to lowest non-zero order the expectation va
then becomes,

〈Ô〉f i = 〈Φf i |Ô|Φf i〉

= 〈0|
(

gt

2σ

)N 1

N !
〈F |℘{Âj }N |I 〉

〈F |I 〉 |0〉

(23)=
(

gt

2σ

)N 1

N !
〈F |℘{Âj }N |I 〉

〈F |I 〉 .

The next lowest-order term in the expectation va
corresponds to any of theN pointers undergoing a
extra pair of transitions (i.e., a pointer is raised to|2〉
and subsequently lowered back to|1〉). Consequently
it will be reduced in size by a factor of 2( gt

2σ
)2 com-

pared to the lowest-order term. Using Eq.(23) the
N th-order joint weak value can now be expressed
the simple formula

(24)
1

N !
〈
℘{Âj }N

〉
W

=
〈

N∏
j=1

âj

〉
f i

(
2σ

gt

)N

.

It is often the case that each operatorÂj acts on a
different particle, ensuring that all̂Aj commute. This
allows the further simplification of theN th-order joint
weak value to

(25)

〈
N∏

j=1

Âj

〉
W

=
〈

N∏
j=1

âj

〉
f i

(
2σ

gt

)N

.

For commuting observables, the magnitude of the
multaneous shift in theN pointers that results from
concurrent kicks from allN terms in the Hamiltonian
in Eq. (2) is proportional to the shift in one pointe
created by a single von Neumann Hamiltonian for
measuring operator̂M. The role of the annihilation op
erators is to isolate this simultaneous pointer shift fr
the total uncorrelated shifts of theN pointers and thus
duplicate the action ofH = gM̂P̂ , without the need
for multiparticle interactions.

Since Eq.(25) requires the measurement of the a
nihilation operator, which is not Hermitian, one mig
think the expression is, in principle, unmeasurable
fact, if one expands the annihilation operator in ter
of X̂ and P̂ for each pointer then one is simply le
with expectation values of products of̂X or P̂ for
each pointer. One then measuresX̂ in one ensemble o
pointers andP̂ in an identically-prepared ensemble

The expression in Eq.(25) is the central result o
this work. As in previous papers, this result shows h
one can practically measure a joint weak value e
without the multiparticle interactions the AAV method
requires[22,23]. However, this expression is muc
more elegant and it makes it clear that the annihila
operator plays a key role in joint weak measureme
Specifically, with the use of the annihilation operat
the similarity to the strong measurement expecta
value in Eq.(3) is apparent. For strong measureme
the equivalent expectation value to theN th-order joint
weak value is

(26)

〈
N∏

j=1

Âj

〉
=

〈
N∏

j=1

X̂j

〉(
1

gt

)N

.

The similarity is striking and makes a good case for
use of the annihilation operator in the understandin
weak values.

Let us compare Eq.(25) to the previous result
for the N th-order joint weak value[23]. In the pre-
vious paper, it was expressed recursively in terms
two N th-order correlations between the pointers a
to N different joint weak values of orderN − 1. Uti-
lizing this recursive formula, theN th-order joint weak
value can be expressed purely in terms of the exp
tation value of position and momentum correlatio
This expression includes 2N+1 − 2 distinct correla-
tions of various orders, although most will be clo
to theN/2 order as the number of distinct expectat
values at each order follows the binomial distribution.
In comparison, Eq.(25) relates theN th-order joint
weak value to 2N correlations in the positions and m
menta of allN pointers and so requires roughly ha
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from the previous paper (but of higher order).

As a specific example of the use of Eq.(25), the
weak value of the product of two spin compone
S1xS2y would be,

〈S1xS2y〉W =
(

2σ

gt

)2

〈â1â2〉f i

=
(

2σ

gt

)2〈( 1

2σ
X̂1 + i

σ

h̄
P̂1

)

(27)×
(

1

2σ
X̂2 + i

σ

h̄
P̂2

)〉
f i

.

The real and imaginary parts of the weak value
then

Re〈S1xS2y〉W
(28)=

(
1

gt

)2(
〈X̂1X̂2〉f i − 4σ 4

h̄2 〈P̂1P̂2〉f i

)
,

Im〈S1xS2y〉W
(29)= 2σ 2

h̄

(
1

gt

)2(〈X̂1P̂2〉f i + 〈P̂1X̂2〉f i

)
.

The importance of the pointer momentum shift
demonstrated in the above example. With our m
surement technique even the real part of weak va
is related to the pointers’ momenta,P̂1 andP̂2. In gen-
eral, the momentum and position observables for e
of theN pointers will appear in the expression for t
real part of theN th-order joint weak value.

Note that like single weakmeasurements, thi
method for measuring theN th-order joint weak value
is not limited to the particular interaction or point
used in our measurement model[24]. For example,
one can perform a derivation very similar to the o
presented here where a spin, as opposed to pos
pointer is used. For a spin pointer, the Hamilton
would beH = −gÂŜy = igÂ(Ŝ+

z − Ŝ−
z )/2, whereŜ+

i

and Ŝ−
i are the raising and lowering operators for t

Ŝi basis. The initial pointer state would be the low
eigenstate of̂Sz, with eigenvalue−h̄s. In this case, the
expression for theN th-order joint weak value in term
of N spin pointers is

(30)

〈
N∏

j=1

Âj

〉
W

=
〈

N∏
j=1

Ŝ−
jz

〉
f i

(
1

gth̄s

)N

,

,

whereŜ−
jz is thez-basis lowering operator for thej th

pointer and allÂj are assumed to commute. An im
portant advantage of using spin is the absence of
equal coefficients in the expression for the lower
operator. This puts the shifts in the pointer obse
able and its conjugate on equal footing. Using su
a pointer means that the physical shift in the con
gate observable does not become smaller as the
surement becomes weaker. Expectation values are
particularly easy to measure for spins (and polar
tions), especially spin 1/2 systems since there are on
two basis states which need to be projected onto.
instance, theN th-order joint weak value would onl
require 22N measurements in total ifN spin 1/2 point-
ers were used.

In the present work, we have greatly simplified a
cent extension of weak measurement which makes
experimental investigation of composite, or joint o
servables possible[22,23]. We have shown that whe
single and joint weak values are expressed as ex
tation values of annihilation operators, they take
a surprisingly elegant form very similar to that se
in standard strong measurement. This form is ea
generalized to any measurement device in which
initial pointer state is the eigenstate of an appropr
lowering operator. With the extension, the weak m
surement of joint observables only requires the sa
apparatus that one would need to weakly measure
of the component observables separately. Joint obs
ables are central to the detection and utilization
entanglement in multiparticle systems. The weak m
surement of these observables should be particu
useful for investigating post-selected systems suc
those that have been used produce novel multip
cle entangled states or those that implement quan
logic gates[25,26].
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