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A recent experimental proposal �S.E. Ahnert and M.C. Payne, Phys. Rev. A 70, 042102 �2004�� outlines a
method to measure the weak value predictions of Aharonov in Hardy’s paradox. This proposal contains flaws
in the state preparation method and the procedure for carrying out the requisite weak measurements. We
identify previously published solutions to some of the flaws.
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I. INTRODUCTION

Weak measurement is an extension of the von Neumann
measurement model, in which the coupling of the measure-
ment pointer to the measured system is small �1�. This pre-
vents measurement-induced disturbance of the measured sys-
tem and avoids collapse. Consequently, weak measurement
is suitable for studying systems involving post-selection such
as Hardy’s paradox �2�. Hardy’s paradox involves two over-
lapped Mach-Zehnder interferometers where each interfer-
ometer acts as an interaction-free measurement �IFM� �3� on
the particle in the “inner” arm of the other interferometer.
The paradoxical result is that occasionally both interaction-
free measurements are positive and indicate the simultaneous
presence of the two photons in the inner arms of the Mach-
Zehnders, yet one never finds the photon-pair there when
directly measured. Aharonov used weak measurement to find
which Mach-Zehnder arms the photons were in, individually
and as a pair, in the subensemble of systems for which the
IFMs give their paradoxical result �4�. Unlike standard,
strong quantum measurements, the results of these weak
measurements, called “weak values”, are consistent with
each other and hence resolve the paradox. The resolution is
nevertheless strange as it shows that there were negative one
pairs of photons in the “outer” arms. Although there has been
a proposal to test Aharonov’s predictions in an ion system
�5�, as of yet there have been no experiments. This comment
is on a recent experimental proposal by Ahnert and Payne for
a linear optics implementation of Hardy’s paradox and the
aforementioned weak measurements �6�. We address two
main problems in the proposal. First, the state preparation
procedure does not produce the correct state for Hardy’s
paradox. Second, the outlined methods for conducting weak
measurements of two-particle observables are not capable of
measuring the weak values of the operators Aharonov inves-
tigated.

II. STATE PREPARATION PROCEDURE

In this section, we show that Ahnert and Payne’s proce-
dure for creating the necessary state with linear optics and
post-selection does not work. The authors chose a polariza-
tion representation to encode the paths of the photons, where

�H� represents the Mach-Zehnder inner path and �V� repre-
sents the outer. They aim to produce the nonmaximally en-
tangled initial state �� ��= ��HH�+ �HV�+ �VH�� /�3. They be-
gin with two pairs of photons, each in the state ��HH�
+ �VV�� /�2, that enter the setup shown in Fig. 3 of Ref. �6�.
Upon a detection at D�, the authors claim the state collapses
to the target initial state. Instead, their apparatus produces the
density matrix ��HH��HH�+ �HV��HV�+ �VH��VH�� /3. The
reason that there is no coherence between the terms in this
state is because the apparatus cannot remove the which-path
information remaining after the detection of a photon at D�:
�HH� results in no photons exiting the two polarizing beam
splitters �PBS�; �HV� results in a V photon exiting the upper
PBS; and �VH� results in a V photon exiting the lower PBS.
Tracing over the modes exiting the vertical ports of the two
PBSs leaves a mixed state unsuitable for Hardy’s paradox. In
fact, this flaw is a relatively minor problem as there are other
even simpler methods that require only one pair of photons
and linear optics to produce the appropriate entangled state.
Specifically, the target initial state �� �� can be written as
a����+b������ via a Schmidt decomposition. Beginning
with a source that emits photon pairs in nonmaximally-
entangled states of the form a�HH�+b�VV� such as the one
demonstrated in Ref. �7�, the latter state can be produced by
straightforward polarization rotations. A linear optics imple-
mentation of Hardy’s paradox �but not the weak measure-
ments� was proposed by Hardy in 1992 �8� and was recently
demonstrated in Ref. �9� subsequent to the publication of
Ref. �6�.

III. TWO-PARTICLE WEAK MEASUREMENT

The aim of Ahnert and Payne was to suggest a feasible
implementation of Aharonov’s weak measurements. In Aha-
ranov’s work, the single-particle weak measurements are
simply identical to the IFM results. It is the two-particle
weak measurements that are most significant since they re-
veal a consistent resolution of Hardy’s paradox. In this sec-
tion, we address the two ways in which the paper proposes to
do two-particle weak measurements.

First, we review Ahnert and Payne’s single-particle weak
measurements. They base much of their apparatus and theory
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on an earlier paper �10� which employs the arrival time of
the photon as a measurement pointer similar to in Ref. �11�.
They claim that their apparatus measures the operator Ai
=��Vi��Vi�+��Hi��Hi�, where i=1 or 2 indicates the particle
number. In contrast, Aharonov discussed the weak values of
the polarization projectors PHi

= �H�i�H�i or PVi= �V�i�V�i. The
weak value of Ai is related to the weak values Aharonov
discussed by �Ai�w=��PVi�w+��PHi�w, where the subscript w
indicates a weak value �4�. Using the identity PHi+ PVi= I,
one can derive the additional property of these weak values,
�PVi�w+ �PHi�w=1, which along with �Ai�w, is sufficient to
extract �PVi�w and �PHi�w. The authors find that in Hardy’s
paradox �Ai�w=�, from which we can infer that �PVi�w=1 and
�PHi�w=0. These results agree with the subsequent IFMs �as
they must� and indicate that, individually, each photon is in

the inner arm �V polarization� of its respective interferom-
eter.

In their first method of two-particle weak measurement,
the authors represent the combined measurement of the two
photons with an unconventional vector operator. The prob-
lem with this type of operator is that in the weak regime it
measures quantities such as �PV1�w and �PV2�w as opposed to
�PV1PV2�w, one of the Aharonov’s two-particle weak values.
The specific vector operator the authors propose to measure
is A12= �� ,���VV��VV�+ �� ,���HV��HV�+ �� ,���VH��VH�
+ �� ,���HH��HH�, which, again, is not any one of Aha-
ronov’s four two-particle projectors, such as PVH

= �VH��VH�, but a combination of all four. The operator can
be expanded as a vector

A12 = 	��VV��VV� + ��HV��HV� + ��VH��VH� + ��HH��HH� ,
��VV��VV� + ��HV��HV� + ��VH��VH� + ��HH��HH�


 �1�

=	���H2��H2� + ��V2��V2����H1��H1� + �V1��V1�� ,

���H1��H1� + ��V1��V1����H2��H2� + �V2��V2��

 �2�

=���H2��H2� + ��V2��V2�,��H1��H1� + ��V1��V1�� �3�

=�A2,A1� . �4�

On the surface, A12 appears to be a two-particle operator
representing the measurement of some joint property of the
two photons. In fact, Eq. �4� shows that A12 can be re-
expressed as a vector of two separate single-particle opera-
tors, representing independent measurements of Ai on each
photon. Contrast this with the correct combination, A1� A2,
which Aharonov employed in operators such as �HV��HV�.
Therefore, their proposal, built upon the operator A12, is in-
sufficient to measure any of the two-particle weak values in
Hardy’s paradox. For example, the weak value for �A12�w

= ��A2�w , �A1�w�= �� ,�� �Eq. �23� in �6�� simply contains the
weak values from the single-particle weak measurements re-
viewed above. If one incorrectly interprets this result as the
weak value for the location of the photon pair then one
would conclude that the photons were simultaneously in the
inner arms �had vertical polarizations�. This is in direct con-
tradiction to Aharonov’s prediction of 0 for the weak value
�PV1PV2�w, a prediction which necessarily must concur with
Hardy’s paradox �4� in that the photon pair is never found in
the inner arms simultaneously.

Designing a linear optics experiment to implement the
single-particle weak measurements was never a major hurdle
for Hardy’s paradox. Measurement of a single-particle weak
value is straightforward when the pointer variable is another
degree of freedom in the quantum system. Examples include
a Stern-Gerlach device for measuring spin by coupling to the

transverse momentum of the particle, or the optical analogy
with polarization �12�. Difficulties begin when one means to
measure joint properties of multiple particles. As with strong
quantum measurements, weak values do not obey a product
rule, �i.e., �AB�w� �A�w�B�w �4��, so that multiparticle weak
values cannot be calculated from single-particle ones. In-
stead, they must be measured. In the present example, one
has to weakly measure projectors such as �HH��HH�. If one
follows the original approach to weak measurement, based
on von Neumann system-pointer interactions, nonlinear op-
tical interactions at the two-photon level are required to mea-
sure this projector. Recently, two of us devised a method that
avoids this obstacle �13� and is ideally suited for linear op-
tics. In that work, we show how one can indirectly extract
joint weak values by studying the correlations between two
single-particle weak measurements. This procedure has since
been extended and simplified �14�. In summary, a serious
flaw in Ahnert and Payne’s proposal is that they do not out-
line any such indirect method for weakly measuring two-
particle joint properties while, at the same time, their appa-
ratus is incapable of directly measuring these properties.

Their second method of two-particle weak measurement
consists of inserting detectors in the apparatus before the
post-selection. In the penultimate paragraph of their paper,
the authors assert that one can measure three of the four
two-particle weak values with this method. However, the de-
tectors would collapse each of the two photons to either H or
V polarization and strongly disturb the subsequent post-
selection. This is a strong, intrusive measurement and is
exactly the situation that weak measurement is designed
to circumvent. Furthermore and not surprisingly, these mea-
surements give the strong measurement results, not the weak
ones.
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IV. CONCLUSION

In conclusion, because of these flaws the paper does not
outline a feasible linear optics implementation of weak mea-
surements in Hardy’s paradox. However, the main obstacles
to a linear optics implementation—state preparation and two-
particle weak measurements—have been described and
solved in other works in the literature. Consequently, there
was already a clear way to measure weak values in Hardy’s
paradox using only linear optics.
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