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Recent work by Lundeen et al. [Nature (London) 474, 188 (2011)] directly measured the wave function

by weakly measuring a variable followed by a normal (i.e., ‘‘strong’’) measurement of the complementary

variable. We generalize this method to mixed states by considering the weak measurement of various

products of these observables, thereby providing the density matrix an operational definition in terms of a

procedure for its direct measurement. The method only requires measurements in two bases and can be

performed in situ, determining the quantum state without destroying it.
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The wave function � is at the heart of quantum me-
chanics, yet its nature has been debated since its inception.
It is typically relegated to being a calculational device for
predicting measurement outcomes. Recently, Lundeen
et al. proposed a simple and general operational definition
of the wave function based on a method for its direct
measurement: ‘‘it is the average result of a weak measure-
ment of a variable followed by a strong measurement of the
complementary variable [1,2].’’ By ‘‘direct’’ it is meant
that a value proportional to the wave function appears
straight on the measurement apparatus itself without fur-
ther complicated calculations or fitting. The ‘‘wave func-
tion’’ referred to here is a special case of a general quantum
state, known as a ‘‘pure state.’’ The general case is repre-
sented by the density operator �, which can describe both
pure and ‘‘mixed’’ states. The latter incorporates both the
effects of classical randomness (e.g., noise) and
entanglement with other systems (e.g., decoherence). The
density operator plays an important role in quantum statis-
tics, quantum information, and the study of decoherence.
Because of its generality and because it follows naturally
from classical concepts of probability and measures, some
consider �, rather than �, to be the fundamental quantum
state description. In this Letter, we propose two methods to
directly measure general quantum states, one of which
directly gives the matrix elements of �.

The standard method for experimentally determining the
density operator is quantum state tomography [3]. In it, one
makes a diverse set of measurements on an ensemble of
identical systems and then determines the quantum state
that is most compatible with the measurement results. An
alternative is our direct measurement method, which may
have advantages over tomography, such as simplicity, ver-
satility, and directness. A quantitative comparison of mea-
sures such as the signal to noise ratio, resolution, and
fidelity, has not been undertaken but some limitations of
the direct method have been identified in [4]. As compared
to tomography, which works with mixed states, the most
significant limitation of the direct measurement of thewave

function is that it has only been shown to work with pure
states.
Previous works have developed direct methods to mea-

sure quasiprobability distributions, such as the Wigner
function [5], Husimi Q function [6], and the Glauber-
Sudarshan P function [7]. These are position-momentum
(i.e., ‘‘phase-space’’) distributions that are equivalent to the
density operator, and have many, but not all, of the prop-
erties of a standard probability distribution. The Wigner
function can be directly measured by displacing the system
in phase space and then measuring the parity operator [8].
Equivalently, the integral of the interference between a pair
of rotated and displaced replicas of the system will give the
Wigner function [9]. The Husimi Q function can be di-
rectly measured by an eight-port homodyne apparatus or
by projection on the harmonic oscillator ground state [10].
These phase-space distributions are created to be the clos-
est quantum analogs to a classical probability distribution.
In this sense, they are inherently amenable to direct
measurement.
Weak measurement.—We begin by considering what

happens to our method for directly measuring the wave
function when the state is not pure. At the heart the direct
method is weak measurement [11]. Over the last decade,
interest in weak measurement has grown as researchers
have realized its potential for interrogating quantum sys-
tems in a coherent manner [12]. It has been used to model
and understand photonic phenomena in birefringent pho-
tonic crystals [13], fiber networks [14], cavity QED [15],
and quantum tunneling [16,17]. Weak measurement pro-
vides insight into a number of fundamental quantum ef-
fects, including the role of the uncertainty principle in the
double-slit experiment [18], the Legget-Garg inequality
[19], the quantum box problem [20], and Hardy’s paradox
[21]. It has also been used to amplify small experimental
effects [22] and as feedback for control of a quantum
system [23]. Weak measurements have been demonstrated
in both classical [24] and nonclassical systems [25].
The concept of weak measurement is universally appli-

cable to all types of measurement [26–28] but here we
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introduce it with a standard model of measurement, the
von Neumann model [29]. In it, a measurement apparatus
has a pointer, in an initial position wave function hqj�ii ¼
�iðqÞ / exp½�q2=ð4�2Þ�, whose momentum K is coupled
with strength g to an system observable A via the interac-
tion, U ¼ expð�igAKt=@Þ, where t is the interaction du-
ration. In a measurement ofA, the positionQ of the pointer
is shifted to indicate the result of the measurement, A ¼ a:
�iðqÞ ! �fðqÞ ¼ �iðq� aÞ. In a standard (i.e., ‘‘strong’’,
gt large) measurement, this shift is much greater than the
width � of the pointer and, thus, unambiguously indicates
the measurement result. It also leaves the system in the
associated eigenstate jai, thereby radically disturbing it. To
perform a weak measurement one reduces gt such that
induced pointer shift is less then �, making the measure-
ment result ambiguous. The benefit is that the system
disturbance is reduced. While a weak measurement on a
single system provides little information, by repeating it on
an arbitrarily large ensemble of identical systems one can
determine the average measurement result with arbitrary
precision. We call this the ‘‘weak average’’ hAwi�.
Unsurprisingly, it is simply equal to the standard quantum
expectation value [30], hAwi� ¼ Tr½A�� ¼ hAsi�, where
the latter indicates A is measured strongly.

A distinguishing feature of weak measurement is that, in
the limit of zero interaction (gt ¼ 0), the quantum state of
the system remains unchanged. Subsequent measurements
can now provide additional information about that initial
quantum state j�i. Consider a subsequent strong measure-
ment of observable C that results in outcome c (corre-
sponding to eigenstate jci). The average result of the weak
measurement of A in the subensemble of systems giving
C ¼ c is called the ‘‘weak value’’ and is given by [11],

hAwic� ¼ hcjAj�i
hcj�i : (1)

Surprisingly, the weak value can be outside the range of
the eigenvalues of A and can even be complex [30–33].
Often consideration is limited to its real part, as would be
done in standard measurement [17,28,30], but the imagi-
nary part also has a physical significance: the evolution U
not only shifts the average position of pointer but also the
average momentum of the pointer. These two, purely real,
shifts are proportional to the real and imaginary parts of the
weak value, respectively [30–32]: hAwic� ¼ hQif=gtþ
ihKif2�2=gt@, where hLif � h�fjLj�fi. This result was
generalized to other initial pointer wave functions [34], and
discrete pointers (e.g., qubits or spins) [31]. The complex
nature of the weak value is what enables us to directly
measure the real and imaginary parts of the wave function
and, as we show later, directly measure the Dirac distribu-
tion and density matrix.

Direct measurement of the quantum wave function.—We
now review our method for the direct measurement of the
wave function. The concept is general, however here we

consider the case of a discrete Hilbert space. In this space,
one is free to choose the basis fjaig (associated with
observable A) in which the wave function will be mea-
sured. The method consists of weakly measuring a projec-
tor in this basis �a � jaihaj, and postselecting on a
particular value b0 of the complementary observable B.

By ‘‘complementary’’ we mean that hajb0i ¼ 1=
ffiffiffiffi

N
p

for all
a, where N is the dimension of the Hilbert space. That is,
the overlap is real and constant as function of a. The
existence of state jb0i is guaranteed by the existence of
at least two mutually unbiased bases (MUB) in any Hilbert
space [35]. As discussed in the supplementary information
of Ref. [1], the choice of state b0 out of the basis fjbig is
simply a convention and is equivalent to choosing a refer-
ence frame for the direct measurement, thereby setting the
phases of the basis states in fjaig. Using Eq. (1), the

quantum state j�i is given by j�i ¼ v
P

ah�w
a ib0� jai, where

h�w
a ib0� is the weak value and v is a constant that is inde-

pendent of a. Thus, by stepping through the values of a in a
series of weak measurements one can directly measure j�i
represented in the a basis.
Weak measurement of mixed states.—The weak value of

a system described by a density operator � was first
considered in [15] and shown to be:

hAwic� ¼ hcjA�jci
hcj�jci : (2)

Applying this to our direct measurement method we find,

h�w
a ib0� ¼ hb0jaihaj�jb0i=hb0j�jb0i. Only 2N real parame-

ters are found by scanning a. This will not generally be
sufficient to determine all the parameters in �, which has
N2 � 1 real parameters. Consequently, our method for the
direct measurement of the wave function cannot be used to
determine a mixed state.
Direct measurement of the Dirac distribution.—We now

consider what happens if one replaces the strong measure-
ment of B with a weak measurement. Specifically, we
investigate the weak measurement of the product of pro-
jectors from the two MUB, Sab � jbihbjaihaj with no
postselection whatsoever. We wish to measure its weak
average. Although a non-Hermitian operator A is not
typically considered to be observable, we shall later outline
specific methods for experimentally obtaining its complex
average using weak measurements. Surprisingly, we show
that even if A is non-Hermitian hAwi� ¼ Tr½A�� still

holds for the weak average. In this case, hAwi� is complex

with a physical significance similar to that of the weak
value (i.e., shifts in the position and momentum of the
pointer). For now, we use this result to find the weak
average of Sab:

hSw
abi� ¼ Tr½Sab�� ¼ haj�jbihbjai ¼ S�ða; bÞ; (3)

where S�ða; bÞ is the discrete Hilbert space version of the

Dirac distribution as defined in [36]. Dirac introduced this
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phase-space distribution as a way to represent a quantum
operator O in his 1945 paper [37], ‘‘On the Analogy
Between Classical and Quantum Mechanics.’’ In various
guises it has been investigated periodically during the last
half-century [38]. In optics, variations of the Dirac distri-
bution have been used widely, appearing in Walther’s
definition of the radiance function in radiometry [39] and
Wolf’s specific intensity [40] (as pointed out in [36]). If
O ¼ �, the Dirac distribution is a representation of the
quantum state of a system. For instance, the joint weak
measurement of a position x and a momentum p (i.e.,
Sxp � jpihpjxihxj) on a mixed state � gives the phase-

space version of the Dirac distribution, S�ðx; pÞ, which,
although it is complex, shares many of the desired features
of a quasiprobability distribution [36].

In our weak measurement, if one scans a and b, so as to
directly measure the Dirac distribution over all values of (a,
b), one completely determines the density operator. But in
order to actually calculate the density operator from the

Dirac distribution one must know hbjai ¼ expði�abÞ=
ffiffiffiffi

N
p

.
Since it is not generally known what are the bases in the
MUB set (for any given Hilbert space) a general formula for
�ab is also unknown. However, if fjaig is taken to be the
standard basis (i.e.,

P

N
a¼0 jaihaj ¼ I, the identity operator)

then oneMUB,whichwe take to be fjbig, will always be the
Fourier basis [35,41], jbi ¼ P

N�1
a¼0 jai expði2�ab=NÞ= ffiffiffiffi

N
p

.

In this case, �ab ¼ �2�ab=N, where a and b are integers
solely used to enumerate the states such that 0 � a, b �
N � 1. With these choices for our complementary bases the
density operator is simply related to the Dirac

distribution by a discrete Fourier transform, �a1a2 ¼
P

N�1
b¼0 S�ða1; bÞei2�bða1�a2Þ=N , where �a1a2 ¼ ha1j�ja2i.

This explicitly shows the weak average, hSw
abi�, contains

the same information as the density operator. Much like the
Wigner function, the Dirac distribution can be used to find
the expectation value of an observable through a simple
overlap integral [36]. Unlike the Wigner function, it is
compatible with Bayes’ law and, thus, is consistent with a
quantum analog of classical determinism [42].

Direct measurement of the density operator.—While
quasiprobability distributions are informationally equiva-
lent to the density operator, they are less commonly known
and used. Motivated by a desire to understand the nature of
the density operator we now describe how to measure it
directly in a given basis. Consider the weak measurement
of the product of three projectors, �a1a2 ¼ �a2�b0�a1 ,

where �a1 ¼ ja1iha1j,�b0 ¼ jb0ihb0j, and �a2 ¼ ja2iha2j
and b0 is chosen so that hajb0i ¼ 1=

ffiffiffiffi

N
p

for all a (but is not
required to be from the Fourier basis). As before, there is
no postselection. The weak average is

h�w
a1a2i� ¼ ha1j�ja2i=N ¼ �a1a2=N: (4)

Thus, each element �a1a2 of the density matrix in any

chosen basis (here fjaig) can be measured directly by

weakly measuring the corresponding projectors, �a1 and

�a2 , in between which is a third weak measurement of�b0 .

The proportionality constant N�1 can be eliminated
through the normalization of the density matrix so that
Tr½�� ¼ 1. Keeping b0 fixed while scanning a1 and a2
allows one to map out the entire density matrix.
Weak measurement of products of complementary vari-

ables.—One cause for concern in our two direct measure-
ment methods is that Sab and �a1a2 are not Hermitian,

which, according to the postulates of quantum mechanics,
means they are not observable [43]. Indeed, coupling such
operators to a pointer via the von Neumann interaction (as
in U) leads to an unphysical nonunitary evolution. This
issue can be circumvented by dividing the measurement
into a sequence of unitary von Neumann interactions. Each
has a pointer beginning in same initial state�iðqÞ. We now
describe a pair of schemes that use this strategy to weakly
measure the product of two noncommuting observables E
and F, thereby measuring their weak average hðEFÞwi�. In
the process, we will show that the weak average
hðEFÞwi� ¼ Tr½EF��. And later we will show that weakly

measuring just two observables is sufficient to implement
both direct measurement methods.
Scheme 1.—The first scheme follows a commonly used

strategy for standard (strong) measurements: perform in-
dependent measurements of two observables and correlate
the results to find the observables’ product. With
von Neumann measurements the total evolution is UT �
expðig2EK2t=@Þ expðig1FK1t=@Þ, where the subscripts in-
dicate observables on pointers 1 or 2. If E and F commute,
strong measurements give hðEFÞsi� / hQ1Q2if. The weak
measurement version of this strategy was proposed in [44].
It was simplified in [31] by forming the composite operator
a � Q=2�þ iK�=@, which has the form of an annihila-
tion operator (i.e., aj�ii ¼ 0), so that the standard weak
value [Eq. (1)] has the simple form hAwic� ¼ ð2�=gtÞhaif.
Following [31], one can show that in the limit
g1g2ðt=�Þ2 � 1, the evolution UT induces the pointer
shifts hðEFÞwi� ¼ Tr½EF�� ¼ ðg1g2Þ�1ð2�=tÞ2ha1a2if.
This scheme was demonstrated experimentally in [21] for
products of commuting observables. Reference [34]
showed that it is valid even for noncommuting observables
E and F if they are measured sequentially, as in UT . (This
result can be generalized to an n-product observable, such
as the triple product �a1a2 [31,34].) Thus, just as with

strong measurement, by performing independent measure-
ments of each observable and then evaluating a joint
expectation value on the pointers one can measure
hðEFÞwi�.
Scheme 2.—The second scheme measures F and then,

conditioned on the result, measures E, thereby measuring
their product. A von Neumann interaction couples F to a
first pointer, which shifts the pointer’s position. With a
strength proportional to this shift a second von Neumann
interaction couples E to a second pointer. This
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conditional sequential measurement is described by
the total interaction UD � expð�ig2EK2Q1t=@Þ�
expð�igDFD1t=@Þ, where the rightmost interaction cou-
ples to either D ¼ Q or K, and the subscripts refer to
pointers 1 or 2. For D ¼ K our weak measurement of F
is a standard von Neumann interaction. In the limit of
gKg2t

2=� � 1, the evolution UK shifts the position of
pointer 2 by hQ2if ¼ ðgKg2t2ÞRefTr½EF��g. However,

hK2if ¼ 0, leaving us without ImfTr½EF��g. The imagi-

nary component can be found by coupling F to the posi-
tion, rather than momentum, of the first pointer. If we set
D ¼ Q, then in the limit gQg2t

2�=@ � 1, the evolution

UQ shifts the momentum of the second pointer by hQ2if ¼
ð2gQg2t2�2=@ÞImfTr½EF��g. In summary, two conditional

sequential weak measurements allow us to measure the
real and imaginary components of expectation value of a
product operator.

Both of the schemes can be followed by postselection of
some other observable and, in that case, they would give
the weak value of EF, which can be complex. However,
our schemes show that, even without postselection, the
weak average of a non-Hermitian EF will be complex.
This may come as a surprise since postselection is often
cited as the mechanism for anomalous weak values
[22,24,30].

How to substitute a strong measurement for a weak
measurement of one observable in a product.—We now
show that the weak measurement of CG is equivalent to
first weakly measuring G followed by a strong measure-
ment of C, hðCGÞwi ¼ hCsGwi. This can greatly simplify
both of our proposed methods. In analogy to a standard
joint expectation value, by hCsGwi we mean that for each
measured outcome of the strong measurement of C one
multiplies the corresponding eigenvalue c by its probabil-
ity PðcÞ by the weak value hGwic� to find the average,
P

ccPðcÞhGwic� � hCsGwi. Using Eq. (2), it follows that

hCsGwi ¼ P

cchcjG�jci ¼ Tr½CG�� ¼ hðCGÞwi. In other
words, a joint weak-strong measurement of G and C,
respectively, will have the average result, Tr½CG��. Note
that because both the weak value and the corresponding
pointer expectation values (e.g., hQif) are normalized by

PðcÞ, in an actual experiment the pointer signal will be
proportional to hcjG�jci directly, removing the need to
find the weak value.

Consequently, we can directly measure the full Dirac
distribution and density matrix by measuring the correla-
tions between the weak measurement and the subsequent
strong measurement outcome while we scan the weak
measurement. For the density matrix one would weakly
measure �b0�a1 using scheme 1 or 2 and then strongly

measure �a2 . Alternatively, one can instead strongly mea-

sure A, which projects on the eigenstates f�ag in parallel.
This has the advantage that the final measurement no
longer must be scanned. Similarly, in the experiment in
[1], replacing the slit with a camera (with a preceding

polarization analyzer) in the momentum plane is the only
modification necessary to directly measure the Dirac
distribution for the transverse density matrix of a photon.
Evidently, dividing the joint measurement into weak and
strong parts simplifies each of the two new direct measure-
ments considered in this Letter [given in Eqs. (3) and (4)]
and makes them feasible with existing technology (e.g.,
weak measurement of the product of two operators [21]).
Conclusion.—In this work, we have shown that by

weakly measuring pairs or triple products of complemen-
tary variables of a system it is possible not only to directly
measure its wave function but, also, its density operator. To
measure over the extent of wave function we only need to
scan the first variable of a complementary pair. To deter-
mine the density operator through its Dirac distribution we
must, additionally, scan the second variable. To determine
the density matrix directly, one weakly measures the prod-
uct of a variable, its complementary variable, and the first
variable again. Leaving the complementary variable fixed
at one value while rastering the values of the other two
completely maps the density matrix, one element at a time.
This procedure thus provides the density matrix with an
operational definition, it is the average result of a joint
weak measurement of a variable, then its complementary
variable, then the original variable.
These methods also provide alternatives to standard state

tomography that have three key advantages. One, they are
simpler in that they only require measurements in two of
the system’s bases. Two, they do not require a global
reconstruction—states can be determined locally, point
by point. And three, the amount of state disturbance can
be minimized. Thus, in principle, we can characterize
quantum states in situ, for instance, in the middle of
quantum computation circuits, or during chemical reac-
tions, without disturbing the process in which they feature.
We thank Aephraim Steinberg for useful discussions.
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