
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

A double-slit ‘which-way’ experiment on the
complementarity–uncertainty debate

R Mir1, J S Lundeen 1, M W Mitchell 2, A M Steinberg 1,
J L Garretson 3 and H M Wiseman 3

1 Centre for Quantum Information and Quantum Control and Institute for
Optical Sciences, Department of Physics, 60 St George Street,
University of Toronto, Toronto ON, M5S 1A7, Canada
2 ICFO—Institut de Ciències Fotòniques, Jordi Girona 29, Nexus II,
08034 Barcelona, Spain
3 Centre for Quantum Dynamics, Griffith University, Brisbane,
Queensland 4111, Australia
E-mail: h.wiseman@griffith.edu.au

New Journal of Physics 9 (2007) 287
Received 28 June 2007
Published 28 August 2007
Online athttp://www.njp.org/
doi:10.1088/1367-2630/9/8/287

Abstract. A which-way measurement in Young’s double-slit will destroy
the interference pattern. Bohr claimed this complementarity between wave-
and particle-behaviour is enforced by Heisenberg’s uncertainty principle:
distinguishing two positions at a distances apart transfers a random momentum
q ∼ h̄/s to the particle. This claim has been subject to debate: Scullyet al
(1991 Nature 351 111) asserted that in some situations interference can be
destroyed with no momentum transfer, while Storeyet al (1994 Nature 367
626) asserted that Bohr’s stance is always valid. We address this issue using
the experimental technique of weak measurement. We measure a distribution
for q that spreads well beyond [−h̄/s, h̄/s], but nevertheless has a variance
consistent with zero. This weak-valued momentum-transfer distributionPwv(q)
thus reflects both sides of the debate.
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1. Introduction

An interference pattern forms when it is impossible to tell through which of two slits a quantum
particle travelled to a distant screen. Conversely, performing a which-way measurement
(WWM) to determine which of these two paths the particle took destroys this pattern. This
choice of exhibiting wave- or particle-like behaviour was called complementarity by Bohr [1].

In his debates with Einstein, Bohr ([2], reprinted in [3]) argued that complementarity was
enforced by the (then newly discovered) Heisenberg uncertainty principle. By this he meant the
measurement–disturbance relation which Heisenberg formulated in 1927: in a measurement
of position, Planck’s constant̄h gives a lower bound on the product of the ‘precision with
which the position is known’ and ‘the discontinuous change of momentum’ ([4], translated into
English in [3]). In the context of the double-slit experiment, Bohr argued that a measurement
able to distinguish two positions at a distances (the slit separation) apart must produce an
‘uncontrollable change in the momentum’q ∼ h̄/s. This is just the magnitude required to wash
out the interference fringes, which have a period ofh̄/s in momentum space.

Bohr’s argument was famously reiterated by Feynman [5], who said ‘No one has ever
thought of a way around the uncertainty principle’. However in 1991, Scullyet al [6] proposed
a specific WWM that, according to their calculations, transfers essentially no momentum. This
seemed to show that complementarity is more fundamental than the uncertainty principle. Their
calculation consisted of a proof that asingle-slitwavefunction was essentially unchanged by
their WWM.

The argument of Scullyet al was not accepted by Storyet al [7]. They proved a general
theorem showing, they claimed, that any WWM causes a momentum transfer at least of
order h̄/s, so that the uncertainty principle is indeed relevant to double-slit experiments.
They identified the momentum disturbance as occurring in the convolution of the momentum
probabilityamplitudedistribution. Observationally, their theorem means that if the initial state
were amomentum eigenstatethen the final (i.e. after the WWM) momentum distribution would
have a width4 of at least̄h/s [8].

4 Here and elsewhere, when we say a distribution has width of at leastσ we mean it is nonzero somewhere outside
the interval [− σ, σ ].
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In this paper, we present the first experimental work to address this debate [6, 7, 9] about
momentum disturbance by a WWM in a double-slit apparatus5. We use a WWM akin to that
proposed by Scullyet al, but using photons rather than atoms. Using a technique proposed
recently by one of us [11], we measure aweak-valuedprobability distribution forq. Our
measured distribution forq has a width clearly greater than̄h/s, but has a variance consistent
with zero, thus exhibiting features characteristic of both sides in the debate. This is possible
only because a weak-valued probability can take negative values [11].

This paper is organized as follows. In section 2, we discuss the different concepts of
momentum transfer that have been used in the debate, including the weak-valued momentum-
transfer distribution. In section 3, we explain this last concept in detail, using only concepts
understandable to a classical physicist. It is on this basis that we say that we havedirectly
observedthe momentum-transfer distribution in our experiment, described in section 4.

2. Concepts of momentum transfer

That both sides in the debate [6, 7, 9] had valid claims was first pointed out in [12].
The disagreement came from the fact that the two groups were using different concepts of
momentum transfer. One might have thought that momentum transfer or disturbance was
defined by Heisenberg in 1927 [4], and so should have no ambiguity. In fact, Heisenberg’s
measurement–disturbance relation, as appealed to by Bohr and Feynman, used no quantitative
definition of momentum disturbance at all. This is in contrast to the other uncertainty relation
formulated in [4], referring to ‘simultaneous determination of two canonically conjugate
quantities’. This relation between simultaneously determined uncertainties was immediately
put on a rigorous footing by Weyl [13], using standard deviations in the familiar relation
σ(x)σ (p)> h̄/2. As Heisenberg recognized in 1930 [14], it is only in the case that the particle
is initially in a momentum eigenstate that the simultaneously-determined-uncertainty relation
can be used to derive a rigorous measurement–disturbance relation—see [15] for a discussion.
Thus, in the context of the double-slit apparatus, one cannot use the simultaneously-determined-
uncertainty relation as a basis for a measurement–disturbance relation.

The definitions of momentum disturbance adopted by Scullyet al and by Storeyet al
were both reasonable. Moreover, both concepts agreed for the cases ofclassicalmomentum
transfers [12]. By this phrase, Wiseman and Harrison meant a momentum transfer that could
be described as a random momentum kick, drawn from some (positive) distributionPcl(q) of
momentaq. Examples of WWMs resulting in classical momentum transfer include all those
discussed by Bohr [2] and Feynman [5]. For WWMs with classical momentum transfer, the final
momentum probability distribution is obtained by convolving the initial momentumprobability
distributionwith Pcl(q)6. As a result, the momentum transfer is independent of the initial state
and can be quantified by the increase in the variance of the particle’s momentum, which will
equal the variance ofPcl(q) [8].

The WWM of Scullyet al doesnot result in a classical momentum transfer. This is what
allows their result, that asingle-slit wavefunctionwould be unchanged by their WWM—in

5 In particular, the elegant experiment by Dürret al [10] was not relevant to this issue. As they say: ‘In our
experiment, no double slit is used and no position measurement is performed, so that the results of [8] do not
apply.’
6 This is as opposed to a convolution of the momentumprobability amplitude distributionin the general case as
analysed by Storeyet al [7].

New Journal of Physics 9 (2007) 287 (http://www.njp.org/)

http://www.njp.org/


4

particular, it suffers no increase in momentum variance7. But at the same time, the WWM of
Scullyet aldoes not evade the theorem of Storeyet al involving momentum-transfer probability
amplitudes. This theorem implies that any WWM would disturb amomentum eigenstate,
resulting in a final momentum probability distribution with a width of at leasth̄/s [8].

Although the calculations of Scullyet al and Storeyet al are not in conflict, it is
unsatisfying that their physical predictions require experiments (with a single-slit wavefunction
and momentum eigenstate, respectively) that are incompatible with each other and with the
double-slitexperiment that they are supposed to illuminate. In contrast, the weak measurement
technique that we outline in the next section allows us to observe directly the momentum transfer
while carrying out the original double-slit experiment [11]. Moreover, this weak measurement
technique is unique in allowing aspects from the calculations from both sides of the debates to
be seen in a single momentum-transfer distribution [11].

3. Theory

Consider a double-slit experiment in which the slits are separated in the horizontal (x) direction,
with a WWM following the slits. We are interested in the change in the particle’s momentum
from its initial state (just after the slits) to its final state (after the WWM). For a physicist
ignorant of quantum mechanics, an obvious way to probe this momentum transfer would be
to ‘tag’ particles with an initial momentumpi using a parameter of the particle uninvolved
in the interference effect. For example, one could tag particles by inducing in them a vertical
displacementD. (This is related to the technique we use in the experiment, as described below.)
Then, after the WWM, these particles would be detected at the screen with final momentumpf.
The difference,q = pf − pi, would be the momentum transfer.

One can arrive at a probability distribution forq by selecting the subset of particles with
final momentumpf and counting the number of these that are tagged. In this post-selected
subset,(# tagged)/(total #)= Pr(pi|pf), the probability that a particle began withpi given that
it was later found with momentumpf. One repeats this for every combination ofpi and pf to
attain the unconditional joint probability distributionP(pi, pf)= P(pi|pf)P(pf). From this one
finds the probability for a momentum transferq, averaged over the initial (or final) momentum
of the particle:

P(q)≡

∑
pi

[ P(pi, pf)] pf=pi+q =

∑
pi

[ P(pi|pf)P(pf)] pf=pi+q . (1)

Here we are treatingpi as discrete, as is appropriate for our experimental apparatus, described
later. That is,P(pi|pf) is in fact a probability, whereas strictlyP(q) is a probabilitydensity.

7 In fact, measurements of this kind also cause no change in the variance (or indeed in any of the moments) of
the momentum probability distribution of thedouble-slitwavefunction [8], despite the fact that the momentum
probability distribution itself is changed drastically due to the disappearance of the fringes. The same effect
(invariance of the momentum moments) occurs in the Aharonov–Bohm effect, despite the fringe shift, as shown
by Aharonovet al [16]; see also the discussion in [8]. (Aharonovet al [16] show that thereis however a change
in themodular momentum.) The relation of the WWM of Scullyet al to the Aharonov–Bohm effect emphasizes
its nonclassical nature [8, 16]. It should be noted, however, that the invariance of the momentum moments is not
readily accessible experimentally because for slits with sharp edges (as in our apparatus), the variance of the initial
and final momentum probability distributions is undefinedeven witha regularization procedure (as discussed in
section 3 in the context of the variance of the weak-valued momentum-transfer distribution) [18].
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For classical particles, the procedure just described is completely equivalent to the
following. Instead of counting tagged particles, one measures theaverage vertical displacement
of the whole subset,d = [(# tagged) · D + (# untagged) · 0]/(total #), so thatP(pi|pf)= d/D.
In this experiment, we use this variation because it does not require us to know whether a
particular detected particle was tagged (i.e. had momentumpi) or not. Classically, determining
the momentum of a particular particle is harmless, but in quantum mechanics it would collapse
the state to amomentum eigenstate|pi〉. In effect, the tagging procedure would be a ‘strong’
measurement of initial momentum and the ensuing collapse would disturb the very process
we wish to investigate, the effect of the WWM on the double-slit wavefunction. Thus, for the
quantum experiment, we need a way of reducing this disturbance to an arbitrarily low level.

The solution is to make a ‘weak’ measurement, reducing our ability to discriminate whether
a particular particle had momentumpi or not. We do this by making the induced displacement
D small compared to the vertical widthσ of the particle’s wavefunction. A classical physicist
would regard this as merely reducing the signal-to-noise ratio of the measurement, and would
still interpret the resultd/D as givingP(pi|pf). The reduced signal-to-noise can be overcome
simply by running more trials.

The quantityd/D is the average value of a weakly measured quantity post-selected on a
particular outcome. This is what is known as aweak value[17]. It can be shown theoretically
that a general weak value (in the limitD/σ → 0 ) can be calculated by:

φ〈Xw〉ψ = Re
〈φ|Û X̂|ψ〉

〈φ|Û |ψ〉
. (2)

Here the initial state of the system is|ψ〉, the postelected state is|φ〉 and X̂ is the weakly
measured observable. In the above procedure, these are the double-slit wavefunction, the
final momentum state|pf〉, and the projector for the discretized initial momentum|pi〉〈pi|,
respectively. Evolution after the weak measurement is given byÛ , typically unitary, but in
our case, an operation describing the measurement of the particle by the WWM device [11, 18].
The generality of weak values has made them useful tools to analyse a great variety of quantum
phenomena [19]–[29].

If no post-selection is performed then it can be shown that the average of the weak
measurement result is the same as for a strong measurement,〈ψ |X̂|ψ〉. For X̂ equal to the
projector |pi〉〈pi|, this expectation value is equal to initial momentum probability,P(pi)=

〈ψ |pi〉〈pi|ψ〉. However, in the case of post-selection on state|φ〉, the weak value may lie
outside the eigenvalues of̂X [17], a prediction that was quickly verified experimentally [19].
In particular, if we weakly measure a projector, the weak value can lie outside the range [0,1].
This is of course impossible for a true probability. To make this distinction, we call the weak
value of a projector aweak-valuedprobability (WVP). The fact that a WVP can be negative
enables it to describe states and processes whichrequirea quantum description, similar to other
quasi-probabilities such as the Wigner function [8].

The application of WVPs to momentum transfer in WWMs was first considered in [11].
Our quantityd/D, which a classical physicist would call the conditional probabilityP(pi|pf),
is, in the limit D/σ → 0, exactly the conditional WVP:

d/D → Pwv(pi|pf)=pf

〈
|pi〉〈pi|w

〉
ψ
. (3)
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We manipulate this result according to equation (1) just as a classical physicist would, but we
refer to the resulting quantity as theweak-valuedmomentum-transfer distribution:

Pwv(q)=

∑
pi

[ Pwv(pi|pf)P(pf)] pf=pi+q . (4)

It is in this manner that we directly observe a momentum-transfer distribution: it is derived via
a simple prescription, with no reference to quantum physics, from measurements a classical
physicist would understand.

Like a standard probability distribution,Pwv(q) as defined here integrates to unity.
Moreover, its mean and variance exactly reflect the change in the mean and variance of the
momentum distribution that occurs as a result of the WWM [18]. For WWMs that produce
a classical momentum transfer,Pwv(q)= Pcl(q) and so is positive. However, fornonclassical
momentum transfers,Pwv(q) may go negative. We emphasize that the existence of negative
values ofPwv(q) is not a flaw in the theory. Rather it is a necessary feature in order forPwv(q)
to reflect both sides of the debate, in that this distribution must have a width greater thanh̄/s,
even though its variance

∫
Pwv(q)q2 dq can be arbitrarily small.

One subtlety in relating the theory to experiment is that if the slits have sharp edges (as
they do in our apparatus) thenψ(x) is not continuous. As a consequence, a regularization
procedure is required to make the variance integral

∫
Pwv(q)q2 dq converge [18]. For example,

one can multiplyPwv(q) by an apodizing function e−|q|/κ , calculate the integral, and then let
κ → ∞ [18]. If instead one replaces this smooth cutoff with a sharp cutoff atq = ±qmax, then
the calculated variance diverges asqmax → ∞, oscillating between positive and negative values.
Experimentally the regularization is not achievable with current techniques, as it requiresPwv(q)
to be measured to great accuracy over a very large range. However, the signature of a zero
variance can be seen by calculating the variance from the data in the range [− qmax,qmax], and
observing an oscillation from a positive value to a negative value asqmax is increased. These
oscillations are what ensures that the regularized variance evaluates to zero.

4. Experiment

The experiment we report is the first to address the question of momentum transfer by WWMs in
a double-slit apparatus [10]. The experimental apparatus is shown in figure1. Since photons are
non-interacting particles it is unnecessary to send only one through the apparatus at a time.
Instead, we use a large ensemble simultaneously prepared with the same wavefunction, as
produced by a single-mode laser. It follows that the transverse intensity distribution of the beam
is proportional to the probability distribution for each photon. Treating the photons as particles,
a classical physicist would analyse the experiment using trajectories [30]. In this model, the
transverse motion of the photon is that of a free nonrelativistic particle of massm = h̄/cλ.

The photon ensemble is produced by a 2 mWλ= 633 nm HeNe laser that illuminates
a double-slit aperture with a slit width ofw = 40µm and a centre-to-centre separation of
s = 80µm. We call the long (vertical) axis of the slitsy and the axis joining their centresx.
We use f = 1 m focal-length lenses to switch back and forth between position and momentum
space for the photons. These can be treated as impulsive harmonic potentials in the classical
particle picture. One metre after the first lens, the photon’sx-position xi becomes equal
to ( f/c) · (pi/m), where pi is its initial momentum at the double-slit. Consequently, in the
x-direction the intensity distribution is that of the expected double-slit interference pattern with
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Figure 1. Diagram of apparatus. The photons are prepared in the initial state
by a polarizing beam-splitter (PBS) and a double-slit aperture. They are then
measuredthreetimes: the weak measurement via ay-displacement by the glass
sliver atpi; the WWM via polarization rotation by the half-wave plate (HWP) at
one slit; and the final strong measurement ofpf by the CCD camera. For details
see text. Below the apparatus are shown calculated intensity distributions at the
longitudinal positions indicated, with they-displacement exaggerated for clarity.

a fringe spacing of 8.2± 0.1 mm. In they-direction, the intensity distribution is Gaussian with
a 1/e2 half-widthσ = 1.01± 0.01 mm.

We tag the photons with ay-displacementD = 0.14± 0.01 mm (� σ ensures weakness)
in a range of momenta1 centred onpi. This displacement is induced by tilting an optically
flat glass sliver placed atxi with a width of δ = 1.77± 0.02 mm in thex-direction and a
thickness of 1.00± 0.25 mm. That is, the momentum resolution of our weak measurement of
pi is 1= (m/c f ) · δ � h/s. If there is no momentum transfer we expectPwv(pi|pf)= 1 for
|pi − pf|<1/2 and 0 otherwise. Any deviation from this represents a momentum disturbance.

To implement the WWM, we must switch back to position space with a secondf = 1 m
lens, in essence imaging the slits. Here, the photons pass through a HWP for fine alignment
of their polarization. A second HWP in front of the image of just one of the slits flips the
polarization. That is, the photon polarization carries the WWM result, destroying the double-
slit interference. Since the spatial wavefunction is unaltered, this is exactly the type of WWM
Scullyet alconsidered.

A third f = 1 m lens transforms back into momentum space, so that finallyxf =

( f/c)(pf/m). Here, we record the intensity distribution with a movable CCD camera in an
x–y region of size 27.5 mm× 2.70 mm. This was done forxi = nδ for n running from−7 to 7.

The inset of figure2 shows the momentum distribution of the photons at the CCD, with and
without the WWM, givingP(pf) and P(pi), respectively. To findPwv(pi|pf), we measure for
eachxf the average displacementd in they-direction of the intensity distribution while the glass
sliver is atxi, then divide byD. The example in figure2, for pi = −1.8 mm· (mc/ f ), shows the
typical features ofPwv(pi|pf). The dominant positive feature of the distribution coincides with
the window|pf − pi|61/2. This reflects the fact that half the photons suffer no momentum
disturbance (see the quantum eraser discussion later). The WVP is also positive whenpf is near
the minima of the initial interference pattern (see inset), as required to ‘fill in’ these minima.
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Figure 2. WVP Pwv(pi|pf), found from the y-displacement (dots) of the
intensity distribution at eachpf = xf (mc/ f ). The thin solid curve is calculated
from equation (4) following the theory of [18], using only the independently
measured parameters,w, s and1. The solid black rectangles indicate the weak
measurement window,pi ±1/2. Here pi = −1.8 mm· (mc/ f ), which is on
the side of the central fringe. This gives rise to an asymmetricPwv(pi|pf),
as explained in the text. The inset shows the measured intensity for eachpf

integrated overy, with (solid diamonds) and without (empty circles) the WWM.
The intensity outside the range shown was below the sensitivity of the CCD.

Similarly, the WVP isnegativewhenpf is near the maxima of the pattern. This negativity proves
the existence of a nonclassical momentum disturbance. The asymmetry in the curve is because
herepi was chosen to lie on the side of a fringe. Note that diffraction effects due to the nonzero
strength of our weak measurement lead to smoothing of the experimental curve in comparison
to the theory.

We sum the conditional probabilities for all 15pi according to equation (4) to obtain the
unconditional WVP of a momentum transferPwv(q), plotted in figure3 along with a theoretical
curve. The agreement between the two is as good as we expect given the discrepancies in
individual datasets exemplified in figure2. Our data show that even with the WWM of the
type of Scullyet al, Pwv(q) is nonzero outside the range[−h̄/s, h̄/s]. This supports the stance
of Storeyet albased on their theorem.

Nonetheless, theory predicts thatPwv(q) has zero variance [11], consistent with the stance
of Scully et al. Unfortunately, as explained in section 3, we cannot obtain the theoretical value
of zero because it is practically impossible to obtain data of sufficient quality over a sufficient
range of momenta to evaluate the required regularized integral [18]. Instead we calculate the
integral with sharp cutoffs at±qmax (see the inset of figure3). The experimental values agree
qualitatively with the theoretical curve, which diverges as a function ofqmax. As explained
in section 3, it is the oscillations between positive and negative values that ensure that the
theoretical prediction for the regularized integral is zero. The fact that the variance changes
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theory as curve) over the range [− qmax,qmax] as a function ofqmax.

sign as a function ofqmax demonstrates that the WWM of the type of Scullyet al does not give
random momentum kicks, and is consistent with the weak-valued momentum-transfer variance
being zero.

Scully et al [6] also considered the retrieval of interference in their scheme through the
use of a quantum eraser [31]. That is, interference is seen in the subsets of particles selected
according to the results of projecting the apparatus in a basis conjugate to the one that carries the
WWM result. For a WWM with classical momentum transfer, the different subsets give identical
interference patterns apart from being shifted in thex-direction by varying amounts [32]. By
contrast, for a WWM such as that of Scullyet al, the different interference patterns all have the
sameenvelope, but with differentphases[8].

Our WWM is performed in the horizontal/vertical basis of the photon polarization, so we
implement a quantum eraser using a polarizer in the±45◦ basis. The 45◦ photons form the
usual double-slit interference pattern, whereas the−45◦ photons form the antiphase pattern.
In figure 4, we plot Pwv(pi|pf) with pi = −1.8 mm· (mc/ f ) for both polarizer settings,
along with the measured interference patterns. The 45◦ photon data show that, to a good
approximation,Pwv(pi|pf)= 1, if |pi − pf|<1/2 and 0 otherwise, indicating no momentum
transfer. On the other hand, for the−45◦ photons,Pwv(pi|pf) is substantial even forpf outside
the rangepi ±1/2. These results are found for all values ofpi, demonstrating that the
momentum transfer only appears in the photons making the antifringes. This shows an intimate
connection between the nonclassical momentum transfer and the phase between the slits induced
by the quantum eraser.
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Figure 4. The WVP Pwv(pi|pf) for pi = −1.8 mm· (mc/ f ) with a quantum
eraser consisting of: (a) a 45◦ polarizer; and (b) a−45◦ polarizer, placed after the
WWM. The dots indicate they-displacement of the intensity distribution at each
pf = xf · (mc/ f ) position on the CCD. The diamonds indicate the intensity at
each pf. The vertical lines indicatepi ±1/2, the region of the weak
measurement.

5. Conclusion

To conclude, we implemented a WWM of the type Scullyet al considered, and, using the
technique of weak measurement, directly observed a distribution for the resultant momentum
transferred. This distribution spreads well beyond±h̄/s, in agreement with Storeyet al’s
claim that complementarity is a consequence of Heisenberg’s uncertainty principle (i.e.
the measurement–disturbance relation). However, the observed distribution also supports
Scully et al’s claim of no momentum transfer since its variance is consistent with zero. These
seemingly contradictory observations are compatible only because the weak-valued distribution
we measure takes negative values, showing the usefulness of the weak measurement technique
in illuminating quantum processes.
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