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Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography
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Given an experimental setup and a fixed number of measurements, how should one take data to optimally
reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum
state tomography was first broached by Kosut et al. [R. Kosut, I. Walmsley, and H. Rabitz, e-print arXiv:quant-
ph/0411093 (2004)]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic
results for the case of ‘minimal tomography’. We also introduce the average OED, which is independent of the
state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias.
Monte Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal
with constrained techniques such as maximum-likelihood estimation. We find that these are less amenable to
optimization than cruder reconstruction methods, such as linear inversion.
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I. INTRODUCTION

Quantum state tomography [1–5] is an indispensable tool in
quantum information processing, being essential for the char-
acterization of quantum sources [6–8], gates [9,10], processes
[11–14], and measurements [15,16]. The reconstruction of
quantum states is, however, essentially a classical problem—
that of estimating the parameters of a density matrix from a
data set. The classical theory of multiple parameter estimation
is well developed [17–27], and so a considerable amount is
known about the precision that can be achieved with quantum
tomography [1,28–31].

In this paper we are concerned with designing an experi-
ment so as to optimize this precision. Choosing the right set
of measurements is of paramount importance, and the optimal
measurements for tomography are now known [32–38]. But
it is not always possible to implement them: More often
than not, technical constraints permit only a nonideal set of
measurements [39]. Given such a set, and a finite time in
which to acquire data, one encounters the question “How
much time should be spent on each measurement, so as to
perform the best tomographic inversion?”. This is the problem
of optimal experiment design (OED). We will see that a
judicious design can significantly improve the performance
of tomographic reconstruction. Rather paradoxically, however,
the OED generally depends on the state we wish to reconstruct,
so that one cannot find the OED if one is completely ignorant
of the quantum state. In this paper we introduce two alternative
approaches to experiment design that do not suffer from this
state dependence.

The paper is structured as follows. In Sec. II we review
the theory of multiparameter estimation, and we introduce the
notation to be used subsequently. In Sec. III we will show how
to find the OED quickly using standard numerical techniques.
We then move on in Sec. IV to derive an analytic formula
for the OED, which holds in the case that the quantum state
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is not overdetermined by the available data. Sections V and
VI address the problem of state tomography when no prior
knowledge of the true quantum state exists; that is, when one
really has no idea at all what quantum state we expect to find.
On the one hand, we may decide that we should design our
experiment so that, on average, whatever the true state, the
tomography is as precise as possible. This we call the average
OED. On the other hand, we might want our tomography to
be as “fair” as possible, so that the precision is as close as
possible to being independent of the true state. We call this the
optimal design for tomography (ODT). We find that these two
optimizations are different, so that a choice should be made
about whether fairness or precision is paramount in designing
tomographic experiments. In Sec. VII we present the results
of Monte Carlo simulations to corroborate our predictions.
Finally in Sec. VIII we consider adapting our results to the
case of constrained estimators, such as maximum-likelihood
estimation: We conclude that our optimizations still apply for
such estimators, even though the improvement is less marked
than for unconstrained tomography. Section IX wraps up the
paper with some concluding remarks.

II. BACKGROUND

A. Bloch representation

We suppose that we are given an ensemble of identical
N -dimensional quantum systems, all of which are prepared
in the same way. Quantum state tomography amounts to
estimating 2N2 real numbers comprising the elements of
ρ, the complex-valued N × N density matrix describing the
ensemble. But not all of these numbers are independent of
one another because ρ must always be Hermitian with unit
trace and positive eigenvalues [2]. The first two conditions
reduce the number of independent real parameters in the
density matrix down to N2 − 1. An equivalent description
of the quantum system is then given by the Bloch vector r ,
which is a real column vector whose N2 − 1 elements uniquely
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determine ρ, according to the relation

ρ = 1

N
I + rσ , (1)

where I is the N × N identity matrix. Here σ is an N2 − 1-
dimensional vector whose elements are N × N matrices that
form an orthonormal basis for the space of traceless Hermitian
operators [4,40]. That is to say,

tr{σj } = 0, and tr {σjσk} = δjk. (2)

Any set of matrices satisfying these conditions will suffice
for constructing σ . For N = 2, the three elements of σ are
conventionally taken to be the familiar Pauli matrices, and
then r is the standard three-dimensional vector that describes
the state of a qubit in the Bloch sphere [2]. The vector r is
known as the Bloch or Fano representation of ρ; its usefulness
becomes clear when we consider the way it enters into the
calculation of measurement statistics.

We will perform our tomographic experiment by sending
multiple copies of the state ρ into our apparatus. The apparatus
can be configured in one of M different ways, so that there
are M different possible measurements we can make (for
instance, we could measure the three Cartesian components
of a spin, and M = 3 in this case). Let γ denote the particular
measurement we are making. For each γ , there are nγ different
possible measurement outcomes (in our spin example, nγ =
2S + 1 for all the measurements, where S is the total spin
quantum number). Associated to each measurement outcome
α is a so-called positive operator-valued measure element
(POVM element) [2], which is a Hermitian, positive N × N

matrix �αγ , such that the probability pαγ of obtaining the
outcome α in configuration γ is given by1

pαγ = tr{�αγ ρ}. (3)

The POVM elements contain the physics of our tomography
setup. All noise and detector inefficiency can be incorporated
into them, so that once they are fixed, the only issues we
must deal with are statistical. Like the density matrix, they are
Hermitian, and can also be written in the Bloch representation

�αγ = cαγ I + aαγ σ , (4)

where cαγ is a real number, and aαγ is a real (N2 − 1)-
dimensional vector. For each measurement configuration γ ,
the probabilities pαγ must sum to unity, and this imposes the
sum constraint

∑nγ

α=1 �αγ = I . In the Bloch representation,
we must have, accordingly,

nγ∑
α=1

cαγ = 1, and
nγ∑

α=1

aαγ = 0, (5)

for all values of γ . Now, substituting Eq. (4) into Eq. (3) we
obtain the simple affine relation

pαγ = cαγ + aαγ r, (6)

1Much of our notation is taken from the paper by Kosut et al. [1],
which first introduced the idea of OED for quantum tomography.

which connects the measurement statistics with the Bloch vec-
tor. The probabilities can be collected into an ntot-dimensional
vector p, where

ntot =
M∑

γ=1

nγ , (7)

is the total number of outcomes our experiment can produce,
across all measurement configurations. Then the statistics are
summarized by the matrix equation

p = c + Ar, (8)

where c is a real vector whose elements are the cαγ , and where
A is the ntot × (N2 − 1) matrix whose rows are given by the
vectorized POVM elements

(9)

This notation uses no more matrix elements than necessary,
unlike using ρ and �αγ in (3). As is often the case, the
notational compactness of matrices and vectors will prove
invaluable in teasing out the structure of the optimizations that
follow.

B. Cramer-Rao bound

Suppose that we use a total of Ntot copies of our quantum
system (note that Ntot is different to ntot, the latter being the
total number of possible outcomes). We measure Nγ times in
each of the M configurations, so that we have

Ntot =
M∑

γ=1

Nγ . (10)

At the end of the experiment, we are left with an Ntot-
dimensional data vector n whose elements nαγ are the number
of times the outcome α was observed in configuration γ , so
that

∑nγ

α=1 nαγ = Nγ . We must process n somehow to produce
an estimate of the true state r . The probability of obtaining the
data vector n is given (up to an unimportant combinatorial
factor) by the likelihood function p,

p (n|r) =
∏
αγ

p
nαγ

αγ . (11)

We will see in the following that the sensitivity of this
likelihood function to r , through Eq. (6), determines the
precision of our tomographic inversion. The OED is the set
of numbers {Nγ } which makes our estimate of r as precise as
possible.
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Our approach to finding the OED follows that presented
in [1], in which we seek to minimize the Cramer-Rao bound
[17–19]. This is a classical information-theoretic lower bound
on the mean-squared error in the estimate of r , which does
not depend on the algorithm used to extract that estimate, as
long as the estimate is unbiased (we will discuss certain biased
estimators in Sec. VIII). The Cramer-Rao bound is defined in
terms of the Fisher information matrix2

F = 1

Ntot
〈��T〉, (12)

where 〈·〉 indicates an ensemble average and the symbol T
denotes the transpose. The vector � = ∇rL is the gradient of
the log-likelihood function

L = ln p (n|r) =
∑
αγ

nαγ ln pαγ . (13)

One might expect that “informative” measurements are those
associated with a greater sensitivity of p to r , and indeed with
these definitions, a strong r dependence of p contributes to the
magnitude of the Fisher information F . Substituting Eq. (6)
into Eq. (13), we obtain � = ∑

αγ nαγ aαγ /pαγ , so that

F = 1

Ntot

∑
αγ

∑
βδ

〈nαγ nβδ〉
pαγ pβδ

aαγ aT
βδ. (14)

The statistics for each measurement are found from indepen-
dent experiments, so the cross correlation 〈nαγ nβδ〉 factorizes
with respect to the different measurement configurations;
within the same configuration we can use the standard result
for multinomial distributions, so we have

〈nαγ nβδ〉 = δγ δ[Nγ (Nγ − 1)pαγ pβδ + Nγ δαβpαγ ]. (15)

Only the last term contributes (the other terms vanish due to
the second condition in Eq. (5) [4]). Finally, we are left with
the expression

F = 1

Ntot

∑
αγ

Nγ

pαγ

aαγ aT
αγ . (16)

The inverse of this matrix is a lower bound on the covariance
matrix of our reconstructed state, known as the Cramer-Rao
bound. That is, if we estimate the state to be r̂ , then the matrix
NtotCov(r,r̂) − F−1 has positive eigenvalues. In particular,
taking the trace yields the condition

〈|r − r̂|2〉 � B/Ntot, (17)

where

B = tr{F−1}. (18)

The mean-squared error in our reconstruction is therefore
bounded by the quantity B, which we will henceforth refer
to as the Cramer-Rao bound (CRB). It has a clear operational
meaning as the best mean-squared error achievable by our
tomography experiment (scaled by Ntot). Furthermore, as the

2We have scaled the matrix by Ntot, so that strictly speaking we
are dealing with the Fisher information per datum. The use of this
“normalized” matrix will avoid notational clutter elsewhere.

simulations in Sec. VII demonstrate, the CRB represents a
tight bound—in the limit of a large number of measurements,
the achieved precision (i.e., mean-squared error) for unbiased
tomography is well-described by B/Ntot.

III. NUMERICAL OPTIMIZATION

We are now ready to give a more formal rendering of the
problem at hand. Our aim in finding the OED is to discover the
numbers {Nγ } which minimize B, subject to the constraint in
Eq. (10). Of course the Nγ must be integers since one cannot
perform an experiment a fractional number of times. But the
solution of this problem is intractable, being combinatorial in
nature. We will instead consider what the authors of [1] called
the relaxed problem, where we allow “fractional experiments.”
We define the real, positive M-dimensional vector λ with
elements λγ such that ∑

γ

λγ = 1. (19)

The λ’s are the “weights” representing the experiment design,
so that in the limit Ntot −→ ∞ of a large number of
measurements, we have

Nγ −→ Ntotλγ . (20)

The experiment design λ is only asymptotically correct, but
as our simulations in Sec. VII show, the optimization of λ

produces results which are beneficial for finite data sets with a
wide range of sizes: One simply rounds the right-hand side of
(20) to the nearest integer to obtain Nγ . The Fisher information
becomes

F =
∑
αγ

λγ

pαγ

aαγ aT
αγ . (21)

In [1], similar expressions were derived, and a numerical
convex optimization routine was invoked to find the vector λ

which minimized B = tr(F−1), subject to the normalization
constraint in Eq. (19). But this problem does not require
specialized convex optimization software. The optimization
can be performed quickly using standard gradient-ascent
algorithms since the constraint in Eq. (19) can be incorporated
using a Lagrange multiplier. We define the cost function

J = B + η

(∑
γ

λγ − 1

)
, (22)

where η is a real Lagrange multiplier that imposes the
normalization constraint on λ. The OED is the vector λOED

such that the cost function is minimized, at which point

∇λJ |λ=λOED = 0. (23)

To proceed further, we need to differentiate B. This is most
easily done by re-writing the Fisher information as a product
of matrices, as follows

F = AT
P −1A, (24)

where P = diag( p) and


 = diag
([

λ11
T
n1

, . . . ,λγ 1
T
nγ

, . . . ,λM1T
nM

]T)
, (25)
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are both ntot × ntot diagonal matrices, and where A was defined
in Eq. (9). Here we used 1m to denote the m-dimensional
column vector whose elements are all equal to 1. With the
expression in Eq. (24) in hand, it is easy to differentiate the
cost function [41]. We obtain

∇λJ = η1M − diag{trα[P −1AF−2AT]}, (26)

where (trα[X])γ,δ = ∑
α Xαγ,αδ indicates a partial trace over

the measurement outcomes. The OED is found by minimizing
the norm of ∇λJ , which can be done efficiently using,
for example, MATLAB’s lsqnonlin routine. Convergence is
accelerated by providing the algorithm with an expression for
the Hessian H of J—the matrix containing the gradients of
∇λJ

Hδγ = ∂λδ
∂λγ

J

= tr [(∂λγ

)P −1AKδA

T], (27)

where

Kδ = {F,F−1ATP −1(∂λδ

)AF−1}, (28)

with {· · ·} denoting the anticommutator. The matrix ∂λγ



contains the vector 1nγ
along the diagonal of its γ th subblock

and zeros everywhere else. To proceed with the optimization,
we first pick an initial “guess” for λ. We then perform a quick
line-search optimization to find the value of η that minimizes
J , given our guess. We then feed λ and η into the lsqnonlin
routine.

In Fig. 1, we plot the OED predicted using the previous
procedure for a model polarimetric experiment introduced by
Kosut et al. [1] (see Sec. 2.4, and in particular the top panel
of Fig. 3 therein). The polarization of an incident photon is
analyzed by means of a polarizing beamsplitter (PBS) with a
pair of detectors placed behind each of its output ports, so the
two outcomes of a given measurement correspond to one of
the two detectors firing. A half-wave plate and a quarter-wave
plate before the analyzer are used to modify the measurement
basis, so the different measurement configurations correspond
to different orientations of the waveplates’ optical axes. In
Fig. 1, the angles of both waveplates are allowed to vary in
5◦ increments from 0◦ to 45◦ with respect to the vertical, as
defined by the direction of polarization reflected by the PBS.
This gives 10 configurations for each waveplate, and so a
total number of measurement configurations of ntot = 100. The
input state, which determines the pαγ , is assumed to be purely
diagonal polarization. Details of how the POVM’s representing
the measurements are constructed can be found in [1]. After
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FIG. 1. (Color online) The OED for a simple polarization tomog-
raphy experiment (described in [1]). This result is to be compared
with the top panel of Figure 3 in [1]. The optimization we use is
simple and fast, requiring no specialist software.

transforming into the Bloch representation and applying the
formalism developed previously, we obtain results that stand
in excellent agreement with those presented in [1]. The
advantage of the method presented here is that no dedicated
convex optimization packages are required. The optimization
is therefore easier to implement; only standard numerical tools
(any “conjugate gradients” algorithm will perform well) are
required. Furthermore, the provision of the Hessian makes
for very rapid convergence. In Sec. V, we will see that this
numerical method can also be employed to find the average
OED.

Here we comment that, although we are considering
the problem of what design should be used, given a set
of measurements, the results of this optimization can be
interpreted in terms of which measurements should actually
be used. That is, those measurements for which λγ ∼ 0
can simply be omitted, and a reduced set of measurements
should be performed: Those for which the λ’s are largest [1].
Therefore, if one is able to parametrize the POVM’s that can
be implemented in the laboratory (as was done here using the
angles of the two waveplates), one can use OED to determine
what the optimal measurements are, subject to experimental
constraints, in addition to finding the “weights” that should be
assigned to each one. This application of OED also applies to
its generalization, the average OED, presented shortly.

IV. MINIMAL OPTIMAL EXPERIMENT DESIGN

In certain circumstances, we can do better than the previous
numerical optimization: we can write down an analytic
expression for the OED. This is possible if we are able to
invert the Fisher information matrix F “by hand.” The form
of Eq. (24) is suggestive. If we can take the inverse of the
matrices A, P −1, and 
, we can multiply them to form F−1.
But in general A is not invertible. First, because only square
matrices have inverses, and it may be that ntot �= N2 − 1, and
second, because even if A is square, it must be of full rank, to be
invertible. That is, none of its rows can be linearly dependent
upon any of the others. But the rows of A are given by the aT

αγ ,
which are always linearly dependent upon each other because
of the second condition in Eq. (5)—ultimately because of the
conservation of probability. This latter issue is potentially fatal,
but fortunately it is possible to re-write the Fisher information
in terms of full-rank matrices. To see how, note that from
Eq. (5), we can re-express the last POVM element in each
configuration in terms of the other elements,

anγ γ = −
ñγ∑

α′=1

aα′γ , (29)

where ñγ = nγ − 1 is the number of independent measure-
ment outcomes associated with configuration γ . In subsequent
calculations we will always use primed indices, such as α′, to
enumerate these independent outcomes (i.e., omitting the last
outcome with α = nγ ). Substituting Eq. (29) into Eq. (21), we
obtain

F =
∑

γ

λγ

⎛⎝∑
α′

aα′γ aT
α′γ

pα′γ
+ 1

pnγ γ

∑
α′β ′

aα′γ aT
β ′γ

⎞⎠ . (30)
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Some redefinitions then afford a matrix decomposition for F

F = ÃT
̃
(
P̃ −1 + Q−1II

)
Ã, (31)

where Ã is essentially the same as A, except that the last
POVM element aT

nγ γ has been removed for each configuration.

The matrix Ã is therefore of size ñtot × (N2 − 1), where
ñtot = ∑

γ ñγ = ntot − M is the total number of independent
measurement outcomes. Similarly, the ñtot × ñtot diagonal ma-
trix P̃ = diag( p̃) is formed from the vector p̃ of probabilities
remaining after the last probability pnγ γ for each configuration
has been removed from p. The ñtot × ñtot diagonal matrix 
̃

is defined accordingly as


̃ = diag
([

λ11
T
ñ1

, . . . ,λγ 1
T
ñγ

, . . . ,λM1T
ñM

]T)
. (32)

Q is the ñtot × ñtot “complementary” matrix to P̃ , which
contains the probabilities we removed from P̃ ,

Q = diag
([

pn111
T
ñ1

, . . . ,pnγ γ 1
T
ñγ

, . . . ,pnMM1T
ñM

]T)
. (33)

Finally, the matrix II appearing in Eq. (31) is the ñtot × ñtot

block-diagonal matrix whose γ th subblock is equal to 1ñγ
1T

ñγ
.

If the matrix Ã is square, it should now be invertible (unless
we are unlucky and it is rank deficient for some other reason,
unrelated to the normalization of the POVM elements). To
make Ã square, we must have that

ñtot = N2 − 1. (34)

That is, we require the total number of independent mea-
surement outcomes to equal the number of independent real
parameters specifying the quantum state. If ñtot < N2 − 1,
tomographic inversion is not possible (this is intuitively
obvious, but the Fisher information is also singular in this
case). If ñtot > N2 − 1, the quantum state is overdetermined
by our measurements. For this reason, we refer to the situation
ñtot = N2 − 1 as “minimal tomography.” There are good
reasons why overdetermined tomography is advantageous
since this introduces redundancy which suppresses the ef-
fects of statistical noise [39]. However, when attempting
tomography of high-dimensional systems, the number of
measurements required can become large, and in this case
minimal tomography, involving the fewest possible number of
independent measurement outcomes, is appealing.

For the case of a qubit, there are three distinct types of
experiment that are minimal in this sense. We have N = 2, so
one requires N2 − 1 = 3 independent measurement outcomes.
This can be achieved with (a) a single POVM measurement
with four outcomes, (b) a pair of POVM measurements, one
with three outcomes and one with two, and finally (c) a set of
three POVM measurements, each with two possible outcomes.
In each case we have ntot − M = N2 − 1. In case (a), the
experiment design problem is trivial since there is only one
measurement to make, so we just have λ → λ = 1. Case (b)
is slightly more interesting; the experimentalist’s time must be
divided between two measurements. In what follows we will
frequently treat case (c), whose experiment design is described
by a three-element vector, for illustrative purposes. We refer to
this case as “minimal qubit tomography with binary POVM’s.”

We now present an exact analytic result for the OED for
minimal tomography on arbitrarily large systems (i.e., the

result is not just restricted to qubits). We start by explicitly
inverting F to obtain the CRB. Define

K = ÃÃT, (35)

as the symmetric matrix whose elements are the scalar products
between the POVM elements, Kα′γ,β ′δ = aT

α′γ aβ ′δ . Then we
can write

B = tr{
̃−1K−1(P̃ −1 + Q−1II)−1}
= tr{
̃−1K−1(P̃ − P )}, (36)

where in the second line we have inverted P̃ −1 + Q−1II
blockwise using the rank-1 update to a matrix inverse [41],
introducing the block-diagonal matrix P whose γ th subblock
is equal to p̃γ p̃T

γ , where p̃γ is the ñγ -dimensional vector
of probabilities for all but the last outcome of the γ th
measurement.

After a little algebra, we can rewrite this result in the
following way,

B =
∑
α′γ

bα′γ

λγ

, (37)

where the bα′γ are the elements of the ñtot-dimensional vector

b = p̃ ∗ (d − D p̃) , (38)

with D an ñtot × ñtot block-diagonal matrix whose blocks are
given by the diagonal blocks of K−1, and with the vector d
given by

d = diag(D) = diag(K−1). (39)

Here the symbol ∗ indicates the Hadamard product (i.e.,
elementwise multiplication).

To find the OED, we differentiate the cost function J in
Eq. (22). Armed with the expression (37) for B, we can
do this analytically, and we arrive at the result (omitting an
unimportant normalization factor)

λOED
γ =

√∑
α′

bα′γ . (40)

For the special case of binary measurements (such as
“click”/“no-click” photon counters), the formula becomes
especially simple since binary POVM’s have only a single
independent outcome each. The matrix D becomes purely
diagonal, and we can write

λOED:binary
γ = √

dγ pγ (1 − pγ ), (41)

where we have dropped the redundant index α′.

V. AVERAGE OPTIMAL EXPERIMENT DESIGN

So far we have considered the problem of OED when
the true state is known—both the optimization in Sec. III
and the analytic expressions of the previous section require
knowledge of r in order that the statistics p are fixed. What
if we really have no information about the true state? This
is surely when tomography is most useful, but we cannot
then calculate the OED. In this section we will introduce the
average OED, which does not require any knowledge of r . The
idea is a simple one: Where there is a dependence on r , we
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average over the space of all possible states, to account for our
complete uncertainty about the true state. We will introduce
two approaches. In the first, we average the Fisher information
before minimizing the resulting CRB. In the second, we
calculate the CRB analytically, and then perform the average.
It seems that these two approaches produce essentially the
same results, which is perhaps natural (but not obvious!).
Using the first approach, one can calculate the average OED
using a numerical optimization similar to the one described in
Sec. III. The second approach yields an analytic result for the
average OED, but of course it can only be applied to minimal
tomography.

Both approaches, however, are exact only for qubits. The
reason is that the averaging requires an integral over the space
of physical states. This space is the (N2 − 1)-dimensional
volume such that all states r within it correspond to positive
density matrices. Evaluating the boundaries of this region is
nontrivial, and so, in general, the averaging cannot be per-
formed exactly. But it is known that the space of physical states
is a simply connected convex region, whose boundary lies
between two concentric (N2 − 2)-dimensional hyperspheres
whose radii are given, respectively, by [40]

Rmin = 1√
N (N − 1)

and Rmax =
√

N − 1

N
. (42)

For the case of qubit tomography, with N = 2, these hyper-
spheres coincide, with Rmin = Rmax = R2 = 1/

√
2, the radius

of the well-known Bloch sphere on which all pure qubit
states lie. For higher-dimensional systems, we will continue
to approximate the space of physical states as being bounded
by a hypersphere of radius RN , where RN must lie somewhere
in between Rmin and Rmax. If, at the end of the calculation,
we find that the average OED does not depend (or depends
only weakly) on our choice for RN , then we can be confident
that we have closely approximated the “true” average OED. In
practice, we have found this to be the case, so that our averaging
procedure—crude though it is—produces useful results.

A. Averaging the Fisher information

The definition of the Fisher information in Eq. (12) involves
the evaluation of an ensemble average. For calculating the
OED, we assumed that every member of our ensemble was
prepared in the same state, and so we averaged over the
statistical distribution of the data n, assuming a given state
r . If we consider that, in fact, the prepared state is itself
drawn from a large ensemble of possibilities, then we should
extend our calculation of the expectation by averaging our
result over those possibilities. With no prior information at all,
we should average over the space of all physical states. The
Fisher information obtained by averaging in this way is

〈F 〉 = AT
GA, (43)

where the elements of the diagonal matrix G = 〈P −1〉 are
given by

gαγ =
∫

p(r)

pαγ (r)
dV, (44)

with p the probability distribution from which the states are
drawn. In what follows we consider a uniform distribution

p = const, and take the integral to run over the (N2 − 1)-
dimensional volume enclosed by a hypersphere of radius RN

centered at the origin. For N = 2 the integral in Eq. (44) can
be evaluated analytically to give

gαγ = 3

4R3
2 |aαγ |3

{(
c2
αγ − R2

2

∣∣aαγ |2) ln

[
cαγ − R2|aαγ |
cαγ + R2|aαγ |

]
+ 2cαγ R2|aαγ |

}
. (45)

The generalization to higher dimensions can be found
recursively,

gαγ = 1

|aαγ | {IN2−3(cαγ ,|aαγ |) − IN2−3(cαγ , − |aαγ |)}, (46)

where the integral In(a,b) = ∫ RN

0 xn ln(a + bx)dx satisfies the
recurrence relation

(n + 1)In(a,b) = Rn
N

b
{(a + bRN ) [ln (a + bRN ) − 1] + a}

+Rn+1
N

n

n + 1
− n

a

b
In−1(a,b), (47)

with I0(a,b) = 1
b
(a + bRN )[ln(a + bRN ) − 1] − a

b
[ln(a) −

1]. Once the elements gαγ of G are known, we can apply
the numerical method described in Sec. III to find the average
OED, which is the experiment design λ〈OED〉 that minimizes
the associated CRB 〈B〉 = tr(〈F 〉−1). The only difference is
that the matrix P −1 in Eqs. (26), (27), and (28) should be
replaced with G.

In Fig. 2, we show the result of such a numerical
optimization, for the same set of POVM’s as were used to
generate Fig. 1 in Sec. III (the model is described in [1]). It
is notable that the two figures look very different: The OED
of Fig. 1 is optimal for a particular state (a pure state in this
case), while the average OED has been constructed so as to be
optimal for any state, or more precisely, optimal when we do
not know which state has been prepared.

If we are interested in minimal tomography [so that
Eq. (34) is satisfied], we can write down an analytic formula
for the average OED. The averaged Fisher information is

〈F 〉 = ÃT
̃
〈
P̃ −1 + Q−1II

〉
Ã. (48)

Inverting this gives the associated CRB

〈B〉 =
∑
α′γ

〈bα′γ 〉
λγ

, (49)

0 20 40 60 80 100 120
0

0.025
0.05

0.075
0.1

0.125
0.15

FIG. 2. (Color online) The average OED computed numerically
from the averaged Fisher information. The set of POVM’s is the same
as those used to generate Fig. 1. The marked difference between the
two experiment designs shows how ignorance of the true state changes
the optimization.
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where the averaging procedure yields

〈b〉 = g̃−1 ∗ (d − f ∗ D g̃−1), (50)

with g̃−1 the elementwise inverse of the vector g̃, whose
elements are the gα′γ , defined in Eqs. (45) and (46). The
tilde symbol indicates, as usual, that the element associated
with the last outcome of each POVM has been removed. The
ñtot-dimensional vector f is defined as follows,

fα′γ = 1∑
β g−1

βγ

, for all α′. (51)

Differentiation of the appropriate cost function then yields
the formula for the average OED (again omitting a normaliza-
tion factor),

λ〈OED〉
γ =

√∑
α′

〈bα′γ 〉. (52)

For the case of binary measurements, we drop the index α′,
and we have fγ = gγ . The formula in Eq. (50) then vanishes,

〈bγ 〉 = dγ

gγ

(
1 − gγ

gγ

)
= 0,

but the term in brackets cancels when the λγ are normalized,
so we arrive at the simple expression

λ〈OED:binary〉
γ = √

dγ /gγ . (53)

B. Averaging the CRB directly

We now describe a second method for computing the
average OED. Our approach here is to average the analytic
expression in Eq. (37) for the CRB over a hypersphere—our
approximation to the space of all physical states. Since the
analytic expression only holds for minimal tomography, when
Eq. (34) is satisfied, this method is applicable only in this
situation. To distinguish this from the procedure outlined
previously, where we averaged F , we will use two angle
brackets to denote this type of average

〈〈B〉〉 =
∑
α′γ

〈〈bα′γ 〉〉
λγ

. (54)

Performing this averaging yields the result

〈〈b〉〉 = c̃ ∗ (d − D c̃) − 〈〈x2〉〉diag (DK) , (55)

where c̃ is generated from c by removing the last element from
each configuration, and where 〈〈x2〉〉 stands for the integral of
a Cartesian coordinate x2 over the hypersphere, divided by
the hypersphere volume. For qubits, with N = 2, we have
〈〈x2〉〉 = 1/10, and in general, we find [42,43]

〈〈x2〉〉 = R2
N (N2 − 1)�

(
N2−1

2

)
2(N2 + 1)�

(
N2+1

2

) , (56)

where �(.) is the Euler Gamma function. Differentiating
the appropriate cost function leads to the following analytic
formula for the average OED,

λ〈〈OED〉〉
γ =

√∑
α′

〈〈bα′γ 〉〉. (57)

For the case of binary measurements, the formula reduces to

λ〈〈OED:binary〉〉
γ =

√
dγ [cγ (1 − cγ ) − 〈〈x2〉〉|aγ |2]. (58)

As a simple application of the these approaches to cal-
culating the average OED, consider the particular case of
three binary measurements on a qubit chosen so that the
three independent vectors specifying the POVM’s in the Bloch
sphere all have the same length a. Then we have aT

γ aδ =
a2 cos(θγ δ), where θγ δ is the angle between the vectors aγ and
aδ . The matrix K of scalar products can be easily inverted
in this case. Suppose in addition that the measurements
are symmetric in the sense that the “identity components”
associated with the two outcomes of each measurement are the
same, cγ = 1 − cγ = 1/2. Then Eqs. (58) and (53) both yield
the same surprisingly simple result for the average optimal
experiment design (up to an unimportant normalization factor),

λ〈〈OED:binary〉〉 = λ〈OED:binary〉 =

⎛⎜⎝
sin(θ23)

sin(θ13)

sin(θ12)

⎞⎟⎠ . (59)

Note that when the POVM’s are all mutually orthogonal
with θγ δ = π/2, the average OED is a uniform distribution.
This is consistent with the well-known result that projective
measurements chosen from the three mutually unbiased bases
(MUB’s [34]) for a qubit are optimal in the sense that, given
a uniform distribution for the experiment design, and no prior
knowledge of the state, they provide the best tomographic
precision [33].

It is possible to use the result in Eq. (59) to analyze the
effect of small deviations from the ideal MUB tomography, as
might occur in a polarimetry experiment where the waveplates
can only be oriented with limited accuracy. Suppose that one
makes three measurements, such that θ23 = θ13 = π/2 and
θ12 = π/2 − ϑ , where ϑ is a small deviation. If one uses a
uniform design instead of the average OED, the average CRB
〈〈B〉〉 will increase slightly, and the best achievable precision
will suffer. But how large is this effect? One finds that the ratio
r = 〈〈B〉〉uni/〈〈B〉〉opt of the average CRB’s for the uniform and
optimized designs is given by

r = 3
(2 + cos2 ϑ)

(2 + cos ϑ)2
≈ 1 + ϑ4/18, (60)

where the approximation holds for ϑ � 1. That is, the
misalignment affects the tomographic precision only at fourth
order. This shows that, while the average OED is useful
when one has access to nonideal measurements, it is not
particularly important in the context of small deviations from
ideal measurements. If we set ϑ ≈ π/2, so that the last
measurement is almost degenerate with (i.e., parallel to) one of
the others, then we have r ≈ 3/2; in this situation it is certainly
worth using the optimized design.

In Fig. 3, we plot the average OED λ〈〈OED〉〉 predicted
by Eq. (57), alongside the prediction λ〈OED〉 of the method
presented previously [Eq. (52)], for the case of minimal qubit
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FIG. 3. (Color online) Comparison of the two methods for
calculating the average OED. (a) The set of three binary POVM’s
used in the qubit tomography setup. Arrows represent the vectors aαγ

on the Bloch sphere. (b) On the left is the average OED predicted
by averaging the Fisher information [see Eq. (52)]; on the right
is the corresponding result predicted by averaging the CRB [see
Eq. (57)]. The two results are indistinguishable. This is typical:
sometimes differences between the two methods are discernible, but
generally they produce very similar experiment designs.

tomography using a randomly chosen set of three binary
POVM’s, given by

c̃ =

⎛⎜⎝0.43

0.81

0.49

⎞⎟⎠ ; Ã =

⎛⎜⎝−0.17 0.47 0.19

−0.19 0.11 0.05

−0.19 −0.04 −0.36

⎞⎟⎠ . (61)

Note that the results are exact since the state space is exactly
spherical for a qubit. What is notable is that the two predictions
appear to coincide—although the formulas are different, the
two averaging procedures seem to result in identical, or very
similar, experiment designs. Conceptually, minimizing the
averaged CRB is slightly different to minimizing the CRB
associated to the averaged Fisher information, so it is not
immediately obvious why this is so. Empirically, however,
we have found that both methods generate the same results.

VI. OPTIMAL DESIGN FOR TOMOGRAPHY

The method just presented has an obvious generalization:
Instead of choosing λ so as to minimize the averaged Cramer-
Rao bound 〈〈B〉〉, we could find an expression for 〈〈δB2〉〉, the
variance of B over the state space, and try to find the vector λ

that minimizes this variance. Such an experiment design makes
the tomographic reconstruction as “fair” as possible since the
reconstruction should have as close as possible to a uniform
precision for all states. We call this experiment design the
optimal design for tomography (ODT). Using the expression
in Eq. (37), we can write the variance of B as

〈〈δB2〉〉 = 〈〈B2〉〉 − 〈〈B〉〉2

= λ−1TV λ−1, (62)

where λ−1 is the elementwise inverse of λ, and where the real,
symmetric (and therefore positive definite) M × M variance
matrix V is given by

Vγδ =
∑
α′β ′

〈〈bα′γ bβ ′δ〉〉 − 〈〈bα′γ 〉〉〈〈bβ ′δ〉〉

=
∑
α′β ′

vα′γ,β ′δ. (63)

Performing the average explicitly requires a stout heart; the
result is

vα′γ,β ′δ = 〈〈x2〉〉dα′γ dβ ′δKα′γ,β ′δ

− 2〈〈x2〉〉
∑

j

cα′γ dβ ′δWα′γ,j Ãβ ′δ,j

+ 4〈〈x2〉〉
∑

j

cα′γ cβ ′δWα′γ,jWβ ′δ,j

+〈〈x4〉〉
∑

j

Xα′γ,jXβ ′δ,j

+〈〈x2y2〉〉
∑
j �=k

Xα′γ,jXβ ′δ,k

+ 2〈〈x2y2〉〉
∑
j �=k

Ãα′γ,j Ãβ ′δ,jWα′γ,kWβ ′δ,k

−〈〈x2〉〉
∑
j �=k

Xα′γ,jXβ ′δ,k, (64)

where we defined the matrices W = DÃ and X = Ã ∗ W , and
where the roman indices j,k number the Cartesian coordinates
of the state space, and run from 1 to N2 − 1. The average
〈〈x2〉〉 is defined in Eq. (56) and the other averages are given
by [42,43]

〈〈x2y2〉〉 = R4
N (N2 − 1)�

(
N2−1

2

)
4(N2 + 3)�

(
N2+3

2

) ,

(65)
〈〈x4〉〉 = 3〈〈x2y2〉〉.

We can now find the experiment design that minimizes
Eq. (62). Setting the derivative of the cost function J =
〈〈δB2〉〉 + η(

∑
γ λγ − 1) to zero, we obtain the condition

V λ−1 = ηλ2, (66)

where λ2 is a column vector whose elements are given by
λ2

γ . It is not clear how to solve Eq. (66) analytically, but it is
not hard to find the solution λODT numerically– almost any
optimization algorithm will suffice.

A. ODT or average OED?

Both the ODT and the average OED are reasonable
candidates for an experiment design that does not rely on
prior knowledge of the true state ρ. They are both the
results of a minimization, but their objective functions are
different, so how do they compare? To contrast the two
optimizations, we used the analytic results in Eqs. (54) and
(62) to evaluate the objective functions 〈〈B〉〉 and 〈〈δB2〉〉 using
many sets of N2 − 1 randomly chosen binary POVM’s, for
a range of dimensionalities N = 2–10. Operationally, the
quantities

√〈〈B〉〉 and 〈〈δB2〉〉1/4 are more intuitive, having
natural interpretations as distances in the Bloch representation.
The former is the bound on the root-mean-squared (rms) error
in the reconstructed state r̂—the typical value of |r̂ − r|; the
latter is the square root of the standard deviation of the CRB,
which can be thought of as the range over which the rms error
|r̂ − r| varies.

In Fig. 4, we show in the top two panels how the average
OED and the ODT improve (i.e., reduce) the averages of
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FIG. 4. (Color online) Comparison of ODT and average OED.
The top two panels show how (a) average OED and (b) ODT compare
with a uniform design λγ = 1/M . In part (a), the relative reduction in
the average of the rms error

√〈〈B〉〉 afforded by using λ〈〈OED〉〉 instead
of a uniform design, averaged over 3000 sets of randomly generated
POVM’s, is plotted against the dimension N of the quantum systems:
the red bars (foreground) result from setting RN = Rmax; the blue
(behind) from setting RN = Rmin. In part (b), we show the relative
percentage reduction in the average of the “deviation” 〈〈δB2〉〉1/4

afforded by using λODT instead of a uniform design. The lower two
plots compare ODT and average OED with each other. In part (c), we
plot the relative reduction in the average rms error arising from using
the average OED instead of the ODT. In part (d), the relative reduction
in the deviation given by choosing the ODT over the average OED is
shown. Note that the averages 〈〈·〉〉 over the state space are exact for
qubits, for which Rmin = Rmax, so the discrepancy between the red
and blue bars is entirely statistical for N = 2; the results for higher
dimensions should be interpreted with this in mind.

these quantities (averaged over 3000 sets of random POVM’s)
when compared against the results generated with a uniform
experiment design λ = 1M/M . The rms error

√〈〈B〉〉 is
typically reduced by around 20% when using λ〈〈OED〉〉 [part
(a)], and the “deviation” 〈〈δB2〉〉1/4 falls by ∼40% when
using λODT [part (b)]. Improvements at this level are certainly
significant enough to motivate spending the time to calculate
the appropriate optimal design.

The lower two panels show how the two designs λ〈〈OED〉〉

and λODT perform in terms of the other’s objective function.
Part (c) shows that the average OED improves the rms error
by around 15% over that achieved by the ODT. Similarly part
(d) shows that the ODT, on average, reduces the deviation
〈〈δB2〉〉1/4 by roughly the same amount with respect to the
deviation produced by using the average OED.

In general, then, the two designs are clearly different, in that
using one does not achieve optimality for the other’s objective
function: maximally fair tomography is not maximally precise,
and vice versa. When designing a tomographic experiment,
one should decide whether precision or fairness is the more
important attribute. That said, it does, however, appear that
the average OED is slightly fairer than a uniform design, and
similarly that the ODT is more precise than a uniform design,
so the two procedures are not entirely at loggerheads.

These results are not definitive because we cannot integrate
over the true state space—only our hyperspherical approxi-
mations to it. We can conclude that these approximations are
reasonable if the results do not depend strongly on the choice

made for the radius RN . Examining Fig. 4, we see that the red
and blue bars, which correspond to the minimal and maximal
choices for RN , appear to lie relatively close together, but there
are some marked differences. However, note that for N = 2,
Rmin = Rmax, so the differences here are purely statistical. It
may be that the discrepancies between the results for Rmin and
Rmax, which are most noticeable in parts (c) and (d), can be
explained largely in terms of statistical fluctuations; further
investigation of this issue is probably required.

VII. MONTE CARLO SIMULATIONS

So far we presented a number of mathematical results
involving approximate averages of asymptotic bounds. The
reader could be forgiven for doubting the utility of these results
in the laboratory. Short of performing real experiments—the
ideal proving ground—we cannot do better than applying our
techniques to simulated data, so we have performed some
Monte Carlo simulations of minimal qubit tomography that
provide some insight into when the CRB is saturated, and how
much is gained by implementing an optimized experiment
design.

In these simulations, we generate a set of qubit states
distributed throughout the Bloch sphere, as shown in Fig. 5(a).
The states are chosen so that it is easy to calculate averages
over the Bloch sphere by polynomial interpolation: We use
Chebyshev grids for the radial and polar coordinates and an
equally spaced grid for the azimuth; averages over the sphere
can then be computed accurately using Clenshaw-Curtis
quadrature radially and polarwise, and Fourier interpolation
around the equator [44]. Using six points for each coordinate
yields averages that are accurate to within about 1% with
reasonable computing times.

Figure 6 shows the mean-squared errors predicted by the
CRB along with the errors actually achieved using simulated
data equivalent to 2000 experimental runs, each consisting of
Ntot = 1000 measurements. We chose a minimal set of binary
POVM’s randomly [shown in Fig. 5(b)], given by

c̃ =

⎛⎜⎝0.42

0.41

0.49

⎞⎟⎠ ; Ã =

⎛⎜⎝−0.13 0.08 −0.35

−0.00 0.01 −0.09

−0.26 −0.15 −0.03

⎞⎟⎠ . (67)

(a) (b) (c)
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FIG. 5. (Color online) (a) The 216 sample states used to construct
averages over the Bloch sphere using polynomial interpolation. The
points are distributed evenly around the equator, but Chebyshev grids
are used for the polar and radial distributions—this explains the
clustering of points toward the poles and the center of the Bloch
sphere. (b) The POVM elements used in the Monte Carlo simulations
presented in the text. (c) The average OED for this POVM set.
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FIG. 6. (Color online) Monte Carlo results. Part (a) shows the
variation of the CRB B/Ntot over the Bloch sphere, parts (c) and (d)
show the mean-squared error 〈|r − r̂|2〉 for the various reconstruction
methods. The results for the average OED appear to the left; those
for a uniform design to the right.

We then performed two simulations—one with a uniform
experiment design, and one using the average OED predicted
by Eq. (57) [shown in Fig. 5(c)]. Results are plotted for
three different methods of state reconstruction, which we call
inversion, least squares, and maximum likelihood [3,45].

A. Reconstruction methods

Inversion is the simplest: We first generate an estimate p
of the “true” statistics p using the relative frequencies of each
measurement outcome in the simulated data {nαγ }, by setting
pαγ = nαγ /Nγ . We then substitute this into Eq. (8) and solve
for the Bloch vector

r̂ = A− ( p − c) . (68)

Here the notation A− stands for the Moore-Penrose pseudoin-
verse of A [46–48], which exists even though A is generally
rectangular (and therefore has no true inverse). In MATLAB we
use the backslash operator [49], which computes r̂ directly
by Gaussian elimination. A problem with direct inversion is
that sometimes the estimate r̂ lies outside the Bloch sphere,
producing an unphysical reconstructed density matrix. In the
least-squares method, we remove any of these unphysical
estimates by using the “nearest” (in the least-squares sense)
physical state. This is particularly easy for the qubit states we
consider here, since the state space is spherical: Whenever the
norm of r̂ exceeds R2 = 1/

√
2, we renormalize it,

r̂ −→ R2
r̂
|r̂| . (69)

The maximum-likelihood method is a more nuanced approach
to the same problem [1,4,50–52]. The rationale is to try to find
the physical state which is most likely to have produced the
observed (simulated) data. This is the state r̂ that maximizes
the likelihood function p(n|r̂) defined in Eq. (11), or—more

conveniently—the state that renders the corresponding log-
likelihood L̂ [see Eq. (13)] stationary with respect to changes
in the estimated density matrix ρ̂. A simple iterative scheme
that converges on this state, while including the positivity and
trace constraints on ρ̂, has been derived by Hradil [4,51,52].
Starting with an unphysical state r̂ generated by inversion,
we first normalize it as per the least-squares method. We then
construct the corresponding density matrix ρ̂ using Eq. (1),
and then make the replacement

ρ̂ −→ 1
2 [R (ρ̂) ρ̂ + ρ̂R (ρ̂)] , (70)

where the matrix R, which depends on ρ̂ through the
probabilities p̂αγ = tr{�αγ ρ̂}, is given by [4,51]

R = 1

M

∑
αγ

pαγ

p̂αγ

�αγ . (71)

We repeat this procedure with the updated estimate, and its
associated operator R, until the algorithm converges. The
resulting state is guaranteed to be physical, where the initial
state was not. In the cases that inversion produces a physical
estimate to start with, we accept it without applying the
previous procedure since it can be shown that under these
circumstances inversion already produces the most likely
estimate [4].

B. Results

Figure 6(a) shows that the average OED reduces the CRB
significantly; the improvement over the uniform design is so
large that the two plots appear almost uniform in color since
they share the same color scale. The precision achieved by
direct inversion, shown in part (b), matches the CRB very
closely, and is accordingly improved markedly by using the
average OED.

However, the precision of the other two reconstruction
methods is not well described by the CRB. The least-squares
method performs significantly better than inversion, while
the maximum-likelihood method leaves both other methods
standing, achieving mean-squared errors nearly 2 orders of
magnitude smaller than inversion for some states. The reason
why these methods perform better is clear: Knowledge of the
boundaries of the space of physical states is utilized to improve
the tomographic reconstruction. The least-squares method is
too crude to take full advantage of this constraint, but the
maximum-likelihood method exploits it to impressive effect.
The positivity constraint on the density matrix is not present
anywhere in our derivation of the CRB, and this is why an
estimation method which implements this constraint is able
to beat the “lower bound” on the average errors represented
by the CRB. These simulations highlight the fact that the
CRB as presented in this paper applies rigorously only to
state tomography via direct linear inversion of the measured
statistics.

Does this limit the applicability of our results relating to
optimal experiment design? In the previous example, use of
the average OED reduces the average rms error achieved
by direct inversion over a uniform design by around 25%,
while this number falls to 14% for the least-squares method,
and 5% for the maximum-likelihood method. In the next
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section, we will consider an alternative formulation of the CRB
that includes the positivity constraint, and which therefore
correctly describes the precision achieved by the maximum-
likelihood method. We will see that its optimization results in
very similar experiment designs to those presented previously,
from which we conclude that our results remain close to
optimal even when used with estimation methods that enforce
positivity.

VIII. CONSTRAINED ESTIMATORS

It is well known in classical statistics that the bias and
variance of an estimator are complementary. The precision of
an estimate can be improved using some prior knowledge of
the estimated quantities, but inevitably this biases the estimate,
shifting the mean of the estimator away from the “true” value
[23,53]. The least-squares and maximum-likelihood methods
are biased estimation techniques because they incorporate the
positivity constraint that excludes unphysical states, but at the
same time they are more precise than direct inversion—which
is unbiased—and they are able to beat the unbiased CRB.

It is useful to visualize the true quantum state as a point
in the Bloch sphere, surrounded by a spherical “bubble” that
represents isotropic statistical fluctuations. If the true state
lies close to the boundary of the Bloch sphere, the bubble
may extend into the region of unphysical states. A constrained
estimation method such as maximum likelihood will exclude
these unphysical states, which distorts the shape of the error
bubble. This reduces its size, improving the tomographic
precision, but it is clear that it also introduces bias, since the
center of mass of the bubble no longer coincides with the true
state.

The CRB can be modified to yield a bound on the precision
of biased estimators, but it requires an analytic expression for
the gradient of the bias as a function of the true state [25,54].
This depends on the particular estimator being used, which
removes some of the generality of the expression; in the case
of the maximum-likelihood method, it is not possible to write
down such an expression in any case, since the estimator
itself is only defined implicitly, as the fixed point of the
iteration described in Eq. (70) [23]. In general, constructing
CRB’s for estimators biased by inequality constraints—such
as positivity—is a hard problem [25], and so it is not obvious
how to adapt the foregoing analysis to maximum-likelihood
tomography.

In this section, we show that an alternative parametrization
of the density matrix allows us to replace the inequality
constraint of positivity with the equality constraint of unit
trace. The CRB for estimators with equality constraints is a
much more tractable problem, and we will derive the appro-
priate constrained CRB (CCRB), which correctly describes
maximum-likelihood tomography.

A. The Cholesky representation

Instead of using the Bloch representation of ρ, we will use
its Cholesky decomposition [45,50,55]. That is, we write ρ in
the form

ρ = T †T , (72)

where T is a unique3 upper triangular matrix with real elements
along its main diagonal. The positivity of ρ is built in to this
parametrization because the eigenvalues of ρ are given by the
squares of the singular values of T . Clearly the Hermiticity
of ρ is also guaranteed. However the trace condition must be
added separately (compare this with the Bloch representation,
in which the trace condition and Hermiticity are “automatic,”
and positivity must be imposed separately),

tr{T †T } = 1. (73)

The problem of quantum state tomography now reduces to
finding the N2 real numbers that parametrize the matrix T ,
subject to the equality constraint in Eq. (73). We define the
Cholesky vector θ as the column vector comprising these
numbers, by analogy with the Bloch vector r . To construct
θ , we first define

t =
[

vec (Re{T †})
vec (Im{T †})

]
, (74)

as the (2N2)-dimensional column vector formed by vectorizing
first the real part, and then the imaginary part of T †, and
concatenating the two. We then eliminate all the redundant
elements of t , which contain zeros because of the structure
of T (that is, because T is upper triangular with a real
diagonal—“accidental” zeros we keep). This gives us θ .
With these definitions, the trace condition becomes simply
|t|2 = 1, or equivalently (since we only remove zero elements
to produce θ),

|θ |2 = 1. (75)

That is, the Cholesky vector is of unit length, so that
physical states are restricted to lying on an (N2 − 1) sphere
in what we might call “Cholesky space.” To derive the
CCRB—the Cramer-Rao bound that incorporates this equality
constraint—we need to evaluate the Fisher information using
the Cholesky parametrization, which requires differentiation
of the measurement statistics with respect to θ . Substituting
Eq. (72) in to Eq. (3), we find

pαγ = tr{T �αγ T †}. (76)

In terms of t , we have

pαγ = tTPαγ t, (77)

where the 2N2 × 2N2 matrices Pαγ are generated from the
POVM elements �αγ according to the relation

Pαγ = M ×
[

I ⊗ �αγ

I ⊗ �T
αγ

]
× M−1, (78)

with I the N × N identity matrix and M the matrix that
separates real and imaginary parts, defined by [56,57]

M =
[

1 1

−i i

]
⊗ IN2 , (79)

3T is only unique when ρ is of full rank, which condition excludes
pure states, but in such cases one can recover the uniqueness of T by
adopting a consistent convention on the positions of zeros along its
main diagonal.
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where IN2 = I ⊗ I is the N2 × N2 identity matrix. Finally,
we arrive at the following bilinear expression for the statistics
in terms of θ

pαγ = θTQαγ θ, (80)

where the N2 × N2 matrices Qαγ are formed from the Pαγ by
deleting rows and columns with indices given by those of the
elements of t that are deleted to produce θ . The Qαγ mirror
the properties of the POVM elements themselves, being real,
symmetric matrices that sum to the identity operator,

Qαγ = QT
αγ ,

∑
α

Qαγ = IN2 . (81)

Differentiating the log-likelihood function with respect to θ ,
we find the Fisher information in the Cholesky representation
to be

F = 4
∑
αγ

λγ

pαγ

Qαγ θθTQαγ

= ZT
P −1Z, (82)

where the diagonal matrices 
 and P are as defined in Sec.
III, and where the rows of the ntot × N2 matrix Z are given by
the row vectors

zαγ = 2θTQαγ . (83)

Note that unlike the matrix A appearing in the Bloch
representation [see Eq. (24)], Z depends on the state θ because
the state enters the measurement statistics quadratically, rather
than linearly, in the Cholesky representation. This more com-
plicated dependence on the state makes further manipulations,
such as averaging over the state space, more involved than in
the Bloch representation. But we can find the CCRB, and we
can find the associated OED numerically.

B. The constrained Cramer-Rao bound

In general, a set of n equality constraints on θ can be written
as s(θ) = 0, where s is an n-dimensional column vector of
constraint functions. Let the derivative of s with respect to θT

be the n × N2 matrix S. The CCRB is then given by [22,26,27]

BC = tr{U (UTFU )−1UT}, (84)

where U is the unitary matrix whose columns span the null
space of S,

SU = 0. (85)

Since UTU = IN2 , the cyclic property of the trace gives

BC = tr{(UTFU )−1}. (86)

In our case, this formula produces an extremely simple
result. We have just a single equality constraint, so that
s = s = |θ |2 − 1. The matrix S then collapses to the row vector
2θT, and then U can be any matrix whose columns span the
(N2 − 1)-dimensional subspace that is orthogonal to θ . Now,
multiplying out the product F θ reveals that F θ = 4θ , so that θ
is always an eigenvector of the Fisher matrix with eigenvalue

4. Since F is Hermitian, its N2 − 1 remaining eigenvectors uj

are all orthogonal to θ , and to each other, and we can write

F = 4θθT +
N2∑
j=2

Fj uj uT
j , (87)

where the Fj are the eigenvalues of F associated with the uj .
Now, we are free to take the uj as the columns of U , and then
we have

UTFU = 4UTθθTU +
N2∑
j=2

FjUuj uT
j U,

=

⎛⎜⎜⎝
F2

F3

. . .
FN2

⎞⎟⎟⎠ .

Inverting this diagonal matrix is trivial, and so we obtain the
final expression for the CCRB

BC =
N2∑
j=2

1

Fj

= tr{F−1} − 1

4
. (88)

That is, up to an additive constant, the CCRB is the same as
the unconstrained CRB in the Cholesky representation.

In Fig. 7, we show the results of another Monte Carlo
simulation, in which we compare the mean-squared errors
〈|θ − θ̂ |2〉 predicted by the CCRB with those produced by
maximum-likelihood estimation, and by the least-squares
method, for the same set of qubit states as depicted in

FIG. 7. (Color online) The mean-squared error 〈|θ − θ̂ |2〉
achieved by the maximum-likelihood and least-squares methods
are plotted alongside the CCRB for the same set of sample states
as used to generate Fig. 6. In these Monte Carlo simulations,
we chose a random minimal set of binary qubit POVM’s, and a
uniform experiment design. We then averaged the errors over 2000
virtual experiments, involving 105 measurements each—it seems that
convergence on the CCRB requires larger samples than for the CRB in
the Bloch representation. The precision attained by both constrained
estimation methods is clearly well described by the CCRB, although
it is discernible that maximum likelihood performs slightly better, as
might be expected. For some states, the CCRB seems to “blow up,”
predicting much worse performance than actually achieved. These
states are close to the pure state boundary, on which the Fisher matrix
in the Cholesky representation becomes singular.
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Fig. 5(a). The CCRB describes the errors achieved by both
methods well, although the least-squares method is slightly
less precise. It is not possible to compare the errors produced
by inversion since nonpositive density matrices cannot be
represented with a Cholesky vector.

For pure states, the Cholesky matrix T contains just a
single nonzero diagonal element, so that the Cholesky vector
θ contains zero elements. The determinant of the outer
product θθT then vanishes, rendering the Fisher information
singular. This explains the divergences of the CCRB for
pure states; of course the precision actually achieved remains
finite. These singularities would appear to be a pathology
of the formalism and they should not be given a physical
interpretation. Numerical failure in computing the CCRB is
easily avoided by slightly shifting the pure states away from
the boundary of the Bloch sphere.

C. Experiment designs for constrained estimators

The CCRB can be used to find the OED for constrained
estimators. The analytic formulas from Sec. IV do not quite
carry over to the Cholesky representation, but the numerical
method described in Sec. III can be applied directly. Eq. (82)
for the Fisher information in the Cholesky representation has
precisely the same structure as Eq. (24) for F in the Bloch
representation. Ignoring the constant shift of 1

4 in Eq. (88),
finding the OED simply requires that we minimize the trace of
the inverse of F . To find the solution, we implement exactly
the same numerical algorithm as for the Bloch representation,
the only difference being that we replace the matrix A with Z

in the Eqs. (26) through (28).
To examine the difference between these two

optimizations—the first appropriate to unbiased tomography
and the second designed for constrained estimators—we
would like to compare the average OED’s predicted by the
two calculations. Unfortunately we cannot use any of the
techniques described previously to evaluate the average OED
in the Cholesky representation since the Fisher information
defies attempts to average or invert it analytically. But it is
possible to arrive at the average OED—or at least an average
OED—by brute force. First, one calculates the OED for
each of the sample states rj shown in Fig. 5(a), so as to
obtain λOED(rj ). Next, one uses polynomial interpolation to
numerically approximate the average of λOED over the Bloch
sphere, yielding the design

λ〈OED:brute〉 = 1
4
3πR3

2

∫
λOED(r) dV, (89)

which is literally the average OED. This method is only
feasible for qubit states, where a direct numerical average can
be performed quickly by polynomial interpolation with a few
sample points. When this brute force method is implemented
in the Bloch representation, we have found that the resulting
distributions seem to coincide very closely with the designs
λ〈OED〉 and λ〈〈OED〉〉 introduced in Sec. V; this is why we still
refer to λ〈OED:brute〉 as the average OED.

We compared the average OED’s for the Bloch and
Cholesky representations using 1000 randomly chosen min-
imal sets of binary qubit POVM’s. For each POVM set, we

calculated the “discrepancy” D as the sum of the absolute
difference between the two designs,

D =
∑

γ

∣∣∣λ〈OED:brute〉
γ,Bloch − λ

〈OED:brute〉
γ,Cholesky

∣∣∣ . (90)

Since by definition the λ’s sum to unity, one would expect an
average discrepancy of order 1, when comparing two com-
pletely unrelated distributions. We found 〈D〉 ∼ 0.0390(7) for
the average discrepancy, which shows that the optimal design
for reconstruction by inversion is very close to the optimal
design for maximum-likelihood tomography. Although we are
not able to compare the ODT’s for the two parametrizations
(because the Cholesky representation is too unwieldy), this
suggests that the results we derived in the Bloch representation
for unbiased estimators are useful for constrained estimators
too, even though the Bloch representation does not account for
the constraints.

Despite this, the precision of maximum-likelihood estima-
tion seems to improve less than the precision of inversion upon
adoption of the average OED (whether derived using either
the Bloch or the Cholesky representation), indicating that
this reconstruction technique is less amenable to optimization
generally. It seems that maximum-likelihood estimation is
able to recruit the positivity constraint to counteract the
statistical errors that a poor experiment design exacerbates.
After our foray into the Cholesky representation, we are able
to conclude that the smaller improvements in maximum-
likelihood tomography are “intrinsic” to the method, and
are not due to the neglect of the positivity constraint when
optimizing the design in the Bloch representation. Of course,
if precision matters, it is always better to use an optimized
design over a uniform one.

IX. CONCLUSION

We revisited the problem of optimal experiment design
for quantum state tomography, first introduced in [1]. We
showed that specialist convex optimization software is not
necessary to calculate the OED, and further that analytic results
exist for minimal tomography, in which the measurements
do not overdetermine the state. The reliance of the OED on
knowledge of the true state is rather paradoxical, but we have
explored a number of averaging methods that remove this state
dependence. The averaging relies on approximating the state
space as hyperspherical (an exact procedure for qubits), but
the results are generally insensitive to the radius chosen for the
hypersphere, indicating that this approximation is reasonably
robust.

We introduced the average OED, which optimizes the
average precision, or the “precision on average,” depending on
the details of the method—the resulting designs appear to be
the same. We also considered the ODT, which seeks to render a
tomographic experiment maximally fair. These optimizations
are different, so the experimenter should make a choice about
which property, precision, or fairness is most important when
designing a tomographic setup. Finally, we confirmed that
the formalism correctly describes the achieved precision for
unbiased state estimation techniques, but that constrained
estimators appear to perform better than predicted. However,
a new formulation of the problem allows the treatment of
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these constrained estimators, and shows that designs optimal
for unbiased estimators are also very close to optimal for
constrained methods.

Although this paper contains a rather large number of
results, it seems that the various methods we proposed for
computing the average OED are effectively interchangeable.
That is, numerical evidence suggests that λ〈OED〉 ≈ λ〈〈OED〉〉 ≈
λ

〈OED:brute〉
Cholesky . Of the methods presented, probably the most useful

is the numerical method for finding the average OED described
in Sec. V A. This method is fast, and works for any number
of measurements on a system of arbitrary dimension.4 The
analytic result for the average OED in the case of minimal
tomography with binary measurements in Eq. (58), and the
particularly simple special case in Eq. (59), may also prove
useful.

4Details of the simple (though not pretty) MATLAB codes used are
available from JN on request.

Further work would help to justify some of the claims
we have made, particularly regarding the applicability of
our averaging method in higher dimensions. An interesting
possibility is to apply these techniques in examining the
effectiveness of a detector; perhaps they can be used to
design better measurements under laboratory constraints.
In any case, as quantum tomography becomes increasingly
indispensable, we hope that our results will be of assistance in
real experiments.
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Phys. 649, 59 (2004).

[52] A. I. Lvovsky, J. Opt. B: Quantum and Semiclassical Optics 6,
S556 (2004).

[53] A. Hero III, J. Fessler, and M. Usman, IEEE Transactions on
Signal Processing 44, 2026 (1996).

[54] J. Fessler and A. Hero, in Proceedings of the 36th Midwest
Symposium on Circuits and Systems, 1993 (IEEE, New York,
1993), pp. 253–256.

[55] L. Trefethen and D. Bau, Numerical Linear Algebra (Society for
Industrial Mathematics, Philadelphia, 1997).

[56] A. Van Den Bos, IEEE Proceedings-Vision, Image and Signal
Processing 141, 380 (1994).

[57] D. Brandwood, in IEEE Proceedings H Microwaves,
Optics and Antennas (IEEE, New York, 1983), Vol. 130,
pp. 11–16.

042109-15

http://arXiv.org/abs/arXiv:0808.0944
http://arXiv.org/abs/arXiv:0806.0391
http://dx.doi.org/10.1103/PhysRevA.78.052122
http://dx.doi.org/10.1103/PhysRevA.78.052122
http://dx.doi.org/10.1103/PhysRevA.17.1249
http://dx.doi.org/10.2307/2695802
http://dx.doi.org/10.1103/PhysRevA.79.022109
http://dx.doi.org/10.1103/PhysRevA.79.022109
http://dx.doi.org/10.1137/1002004
http://dx.doi.org/10.1103/PhysRevA.61.010304
http://dx.doi.org/10.1088/1464-4266/6/6/014
http://dx.doi.org/10.1088/1464-4266/6/6/014
http://dx.doi.org/10.1109/78.533723
http://dx.doi.org/10.1109/78.533723
http://dx.doi.org/10.1049/ip-vis:19941555
http://dx.doi.org/10.1049/ip-vis:19941555

