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We report an optical detector with tunable positive operator-valued measures. The device is based on a

combination of weak-field homodyne techniques and photon-number-resolving detection. The resulting

positive operator-valued measures can be continuously tuned from Fock-state projectors to a variety of

phase-dependent quantum-state measurements by adjusting different system parameters such as local

oscillator coupling, amplitude, and phase, allowing thus not only detection but also preparation of exotic

quantum states. Experimental tomographic reconstructions of classical benchmark states are presented as

a demonstration of the detector capabilities.
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Detecting optical fields plays a key role throughout
physics. From the definition of the SI unit of luminosity
[1] to the characterization of quantum processes such as
quantum logic gates [2], precise measurement of the elec-
tromagnetic field is central to both fundamental and ap-
plied physics. The usual method of measuring fields in
optics is either by counting photons or by measuring the
amplitude and phase of the electric field. It is usually not
possible to move continuously between these two mea-
surement regimes with a single detector. For example, stan-
dard homodyne detectors cannot directly probe the particle
nature of light since it is masked by the local oscillator and
electronic noise [3]. Conversely photon-number-resolving
(PNR) detectors possess no phase reference and thus have
no sensitivity to the wave nature of light [4].

The action of a given detector can be specified by a

positive operator-valued measurement (POVM) set f�̂��g,
where f�g labels the outcomes and f�g labels the settings,
such that for each � the set is complete,

P
��̂�� ¼ I [5].

The probability of obtaining outcome � for setting � and

input state �̂ is p�� ¼ Tr½�̂���̂�. In conventional detec-

tors f�̂��g is fixed by the intrinsic nature of the device.

Typically, such POVMs can encompass either Fock-state
projectors (for PNR detectors) or field-quadrature projec-
tors (for homodyne devices). In this Letter, we report a
configurable detector with a flexible POVM, able to tran-
sition smoothly from quadrature to photon-number detec-
tion. The detector is constructed from a variable reflectivity
(R) beam splitter (BS), two PNR detectors, and an auxil-
iary weak coherent state acting as the local oscillator (LO).
We denote such a device as a photon-number-resolving
homodyne detector (PNRHD). The BS input modes,

labeled âin and b̂in, correspond to the LO and the signal
(�̂), respectively [see Fig. 1(a)]. The output modes, labeled

by âout and b̂out, are detected by PNR detectors Da and Db

giving joint outcomes f� ¼ ðka; kbÞg, where kaðbÞ labels the

number of clicks registered at DaðbÞ. The adjustable local

oscillator has settings f� ¼ ðj�j; �Þg, where � ¼ j�jei�
represents the LO complex amplitude. By tuning the LO
coupling, amplitude, and phase the detector POVM set can
be configured to project onto a variety of fundamental
quantum states of the radiation field—Fock, displaced-
Fock, quadrature-squeezed, and macroscopic quantum su-
perposition states, for example. Figures 1(b) and 1(c)
depict the Wigner representation [6] of such POVM ele-

ments (�̂��). Since the action of a measurement is not only

to reveal some property of the state of a system, but also to
project the system in a state commensurate with that in-
formation, all measurement devices may in principle be
used as preparation devices. Thus, the remarkable POVM
elements of the PNRHD can be used not only to optimally

FIG. 1 (color online). (a) Proposed scheme for the POVM
configurable detector. Da and Db are PNR detectors, � is a
weak coherent state. (b),(c) POVM elements �̂�� corresponding

to click events (b) �1 ¼ ð1; 3Þ and (c) �2 ¼ ð1; 1Þ for LO settings
� ¼ ðj�j ¼ 1:5; � ¼ 0Þ, R ¼ 50% and 90% efficient PNR de-
tectors. �̂�� projects onto a single-mode (b) mesoscopic quan-

tum superposition state and (c) squeezed state, with high
probabilities.
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detect the appropriate states [7] but also to prepare them
from quadrature-entangled beams [8].

As an experimental demonstration of the PNRHD capa-
bilities, we have tomographically reconstructed a group of
classical benchmark states. To our knowledge, this con-
stitutes the first full tomographic reconstructions involving
PNR detectors. Indeed, state tomography based on photon-
counting detection has been the subject of much theoretical
work [9], and the few experimental implementations re-
ported to date involve only binary (on-off) detectors [10].
This is due, in part, to the relative infancy of PNR detector
technology, which is an active area of research with several
different approaches to photon counting [11]. In the experi-
ments presented here time-multiplexed PNR detectors are
used, but the techniques can be readily extended to other
PNR detectors. The ability to change the measurement
basis of the detector enables applications other than state
reconstruction for this detection scheme, such as in non-
local state preparation, precision quantum metrology [12],
or the implementation of a continuous-variable entangle-
ment witness [13].

The POVM elements are derived from an analytical
model by first considering ideal PNR detectors, able to
resolve n photons [see Fig. 1(a)]. In this case the probabil-
ity of obtaining measurement outcome � ¼ ðna; nbÞ for
LO setting � is related to �̂ by [14]

p�� ¼ Trab½Û�̂abÛ
yjnaihnaja � jnbihnbjb�; (1)

with Û ¼ ei�ðb̂
yâþâyb̂Þ the unitary operator representing the

BS, R ¼ cos2ð�Þ the LO coupling, �̂ab ¼ j�ih�ja � �̂b the
two-mode input state, and jnaðbÞi the photon-number states

to be detected atDaðbÞ. Using cyclic properties of the trace,
Eq. (1) can be written as p�� ¼ Trb½�̂b�̂���. For the case
of ideal detectors the POVM element �̂ideal

�� is a projector

�̂ideal
�� ¼ j�ih�jb, where j�ib ¼ h�ajUyjnaijnbib. For R ¼

1=2 this can be expressed as

j�ib ¼ e�j�j2=2 ð�� � ib̂yÞnaðb̂y � i��Þnbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnaþnbÞna!nb!

q j0ib: (2)

In any realistic scheme one has to account for unavoidable
imperfections in the PNR detectors such as loss, nonunit
efficiency, and overlap in detector responses. For a given
PNR detector, this can be done by considering the detector
design [4] or by experimental detector tomography [15].
The time-multiplexed detectors (TMDs) used in our ex-
periments accept states of light contained in pulsed wave
packet modes. Each incoming pulse is split into several
spatial and temporal modes by a fiber beam splitter net-
work. These modes are subsequently registered by ava-
lanche photodiodes (APDs). Because the TMD alone is not
phase sensitive, its operation can be described as a map
from the incoming photon-number distribution ~� (the di-
agonal components of the density matrix) to the measured

click statistics ~k by ~k ¼ CL ~�. Here L and C are matrices

accounting for loss and the intrinsic detector structure [4],
respectively. To calculate the POVM elements imple-
mented by our configurable PNR homodyne detector, the
POVMs for TMD detectors Da and Db are determined
from their CL matrices (characterized by independent
methods). The nth element of the aðbÞ TMD POVM then
replaces the projectors jnaðbÞihnaðbÞj in Eq. (1) to obtain the
final expression for the POVM elements �̂��. We note that

our TMDs can resolve up to eight photons, setting the
number of possible outcomes to 81 and truncating the
operator Hilbert space to 9� 9 matrices.
By adjusting the local oscillator amplitude and phase,

the detector POVM elements �̂�� can be tuned to project

onto different bases. We illustrate this by calculating �̂��

for two particular examples, shown in Fig. 1. For a suffi-
ciently large LO amplitude and detector efficiency (	), the
joint click outcomes of the PNR detectors can nearly
project onto a single-mode macroscopic quantum superpo-
sition state [Fig. 1(b)] or a quadrature-squeezed state
[Fig. 1(c)], a feature which suggests our detector can be
used both for preparation and direct detection of such
quantum states. Figure 1 depicts the Wigner representation

of two normalized POVM elements �̂norm
�� for � ¼ 1:5,

	a;b ¼ 90% [16], and 50:50 beam splitter ratio, where

ðx; pÞ label the phase-space conjugate variables. Note
that a normalized POVM element is a positive definite
operator with unit trace, allowing it to have a phase-space
representation similar to that of a density matrix. To quan-
tify the state preparation (detection) efficiency for these
detector configurations, we calculate the overlap between
the target state �̂tar and the normalized POVM projector

�̂norm
�� , by p ¼ Tr½�̂norm

�� �̂tar�. In our numerical simula-

tions, p � 80% can increase to values of up to 90% for
unit efficiency PNR detectors.
To demonstrate the ability of a PNRHD we experimen-

tally reconstruct various states derived from a coherent-
state laser pulse using TMDs for the PNR detectors. The
experimental setup, shown in Fig. 2, consists of three main
components: the state and local oscillator preparation and
the configurable PNRHD. The signal and local oscillator
are formed by splitting 90 fs Ti:sapphire laser pulses,
centered at 784 nm and cavity dumped to a repetition
rate of 250 kHz. In the time-multiplexed detection scheme
the APD dead time (tD � 50 ns) in conjunction with the
total number of temporal modes influences the maximal
detection rate. We chose a time delay between temporal
modes of 100 ns after which the after-pulsing probability
of the APDs drops below 0.1%. This, in combination with
electronic time gating, makes after-pulsing effects negli-
gible and reduces dark counts to less than 5 counts=s. The
input laser mode is split equally into two optical paths by a
half wave plate (HWP) and polarizing beam splitter (PBS),
corresponding to V and H polarizations, respectively. The
LO path has a HWP and PBS to independently control its
amplitude, which is typically set to a small percentage of
the total signal. A pair of mirrors in the LO path, placed on
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a piezoelectric-controlled translation stage, set the relative
phase (�) between the LO and signal. The two beams are
recombined into a single path at a second PBS. A beam
sampler (BS) with low reflectivity followed by a set of
calibrated neutral density (ND) filters completes the state
preparation and directs the signal and LO to a HWP-PBS
combination that acts as the homodyne BS in Fig. 1(a). The
outputs of the final PBS are sent to TMDs (Da;b). The joint

detection events are collected using a field-programmable
gate array interfaced with a computer. The joint statistics
are monitored for 100 different phase settings with a total
measurement time of 15 min. The relative phase � can be
monitored using the light transmitted through the BS,
which is then interfered using a HWP and PBS and de-
tected at a photodiode. The typical fringe visibility mea-
sured at this phase-monitoring step, which indicates the
mode match between the signal and LO, was approxi-
mately 70%. This relatively low contrast is due to chro-
matic dispersion in the beam paths and can be improved by
placing narrow-band interference filters in the initial laser
beam path. Material imperfections and inaccurate calibra-
tion in the homodyne HWP-PBS system could in principle
be accounted for by the model parameter R; however, such
deviations were found to be below 1% in our optical
elements and are not considered a significant source of
experimental uncertainty in the error analysis.

The local oscillator amplitude j�j ¼ hnLOi1=2 is ob-
tained by measuring the average photon number in the
LO beam hnmeasi and then multiplying by the transmission

(T) of a set of calibrated ND filters, so that ðThnmeasiÞ1=2 ¼
hnLOi1=2, with relative error of approximately 5%, due to
the inaccuracy in T. The detector efficiencies (	aðbÞ) are
obtained by fitting the parameters	aðbÞ in the loss matrixL

which retrieve an average photon number hnaðbÞi �
hnLOi=2, measured at detector DaðbÞ when the signal is

blocked. For our experiments the fitted detector efficien-

cies were 	a ¼ 0:10� 0:01 and 	b ¼ 0:15� 0:02, where
the errors ("	 � 10%) are obtained by propagating the

uncertainty in hnLOi. The low efficiency, as compared to
the APD quantum efficiency ( � 60%), is due to the single-
mode fiber network used to implement the PNR detection.
To estimate the effect of these errors in the tomographic

reconstructions, we built two POVMs f�maxðminÞ
�� g using the

maximum (minimum) possible values around the mean for

the set of parameters (hnmaxðminÞ
LO i, 	maxðminÞ

a , 	maxðminÞ
b ). We

found that, while a change of up to 10% in hnLOi does not
affect the reconstruction (due to the relatively small am-
plitude of the LO, as compared to the signal), a change of
10% in the efficiencies propagates into a relative error in
the final estimated average photon number hnesti of� 10%.
In order to estimate the most likely state (�̂est) that is
compatible with the empirical photocount statistics pemp

�� ,

we use a recursive least-squares algorithm to minimize

(over �̂est)
P

��ðpemp
�� � Tr½�̂���̂

est�Þ2, subject to the con-

straints �̂est � 0 and Tr½�̂est� ¼ 1 [7].
The first class of states to be examined were the phase-

averaged coherent states. Here 20 evenly distributed LO
phases � are chosen between 0 and 2
 for the data ac-
quisition. Figures 3(a)–3(c) show the experimentally re-
constructed Wigner functions and corresponding contour
plots for three different phase-averaged coherent states.
The Wigner functions are rotationally symmetric and
centered about the origin, as expected for such states.
To quantify the error in the estimated state we calcu-
late the variance � between the two extreme esti-

mated states �̂maxðminÞ, obtained using the two extreme

POVMs f�maxðminÞ
�� g, by � ¼ 1� F, with F ¼

jTr ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffiffiffiffiffiffið�̂minÞp

�̂max
ffiffiffiffiffiffiffiffiffiffiffiffiffið�̂minÞp Þ

q
Þj2 the fidelity between the

two extreme estimated density matrices. Figure 3(d) shows
an extreme POVM element for outcome � ¼ ð1; 0Þ and

Fig. 3(e) shows the difference between �̂max
�� � �̂min

�� . Such

POVM elements do not look exactly like a projector onto a

FIG. 3 (color online). Wigner function and corresponding con-
tour plot (inset) of the experimentally reconstructed phase-
averaged weak coherent states, with average photon numbers
hnesti equal to (a) 0:29� 0:03, (b) 0:61� 0:06, and
(c) 0:71� 0:07. (d) One extreme POVM element used in the
error estimation �̂max

�� , (e) difference between two extreme

POVM elements �̂diff
�� ¼ �̂max

�� � �̂min
�� .

FIG. 2 (color online). Experimental set up for the photon-
number-resolving homodyne detector (PNRHD). The output of
a Ti:sapphire laser is split into two arms (by a PBS), which
eventually correspond to signal �̂ and LO beams. A piezoelectric
moves a mirror to set the phase � of the LO. Both arms are then
recombined and sent through the configurable homodyne detec-
tor.
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single photon state. This is due to the low detector effi-
ciency which mixes POVM elements corresponding to
higher photon numbers. Additionally, as a second figure
of merit, we quantify the proximity of the reconstructed
state �̂est with an ideal phase-averaged coherent state �̂PA

of average photon number hnesti, using the fidelity F, by

replacing �̂maxðminÞ by �̂PAðestÞ. The variances and fidelities
ð�; FÞ resulted in (a) ð0:004; 0:985Þ, (b) ð0:010; 0:973Þ, and
(c) ð0:027; 0:954Þ, respectively. Note that the error in-
creases with the average photon number, an expected effect
which is due to the truncation of the Fock-state space
present in the modeled POVMs.

Next, in order to test the phase sensitivity of this detec-
tor, several coherent states were tomographically recon-
structed. Figure 4 shows the experimentally reconstructed
Wigner functionWðx; pÞ and density-matrix amplitude j�̂j,
for coherent states of different average photon numbers.
The variance and fidelity are used again as figures of merit
of the state reconstruction, with �̂CS the density matrix for
an ideal coherent state with average photon number hnesti
and phase �est taking the place of �̂PA, hnesti was obtained
from the diagonal elements of �̂est, and �est was obtained as
an average over the off-diagonal matrix elements using

�est
n;m ¼ hnestiðnþmÞ=2e�ðhnestiÞe�iðn�mÞ�est=

ffiffiffiffiffiffiffiffiffiffiffi
n!m!

p
. We found

ð�; FÞ equal to (a) ð0:002; 0:999Þ, (b) ð0:010; 0:998Þ, and
(c) ð0:010; 0:997Þ, respectively.

In conclusion, we have introduced a highly adaptable
homodyne detection scheme with PNR detectors. This
approach bridges the gap between phase-sensitive weak-
field homodyne techniques and PNR detection, opening a
new avenue of research and realm of applicability for PNR

technology. The various states the detector can directly
project onto (squeezed states, macroscopic quantum super-
position states, and displaced-Fock states) make it useful
not only for state detection, but also for state preparation, a
direction which is currently being explored by our group.
The detector has proven to be effective for state tomogra-
phy as demonstrated by the experimental reconstruction of
weak coherent and phase-averaged weak coherent states.
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76, 4344 (1996).

[10] G. Zambra et al., Phys. Rev. Lett. 95, 063602 (2005);
K. Banaszek, C. Radzewicz, K. Wódkiewicz, and J. S.
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FIG. 4 (color online). Wigner function (left) and amplitude of
the density matrix in the photon-number basis j�̂nmj (right) for
experimentally reconstructed weak coherent states. Here ðx; pÞ
labels the quadratures and ðn;mÞ labels the photon numbers.
Insets show corresponding contour plot (left) and diagonal
matrix elements (right). Rows correspond to an average photon
number hnesti of (a) 0:29� 0:03, (b) 0:59� 0:06, and
(c) 1:53� 0:1.
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