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Conditional-Phase Switch at the Single-Photon Level
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We present an experimental realization of a two-photon conditional phase switch, related to the “c-f”
gate of quantum computation. This gate relies on quantum interference between photon pairs and gen-
erates entanglement between two optical modes through the process of spontaneous parametric down-
conversion (SPDC). The interference effect serves to enhance the effective nonlinearity by many orders
of magnitude, so it is significant at the quantum (single-photon) level. By adjusting the relative optical
phase between the classical pump for SPDC and the pair of input modes, one can impress a large phase
shift on one beam which depends on the presence or absence of a single photon in a control mode.
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A great deal of effort has gone into the search for a prac-
tical architecture for quantum computation. As was recog-
nized early on, single-photon optics provides a nearly ideal
arena for many quantum-information applications [1]; un-
fortunately, the absence of significant nonlinear effects at
the quantum level (photon-photon interactions) appeared
to limit the usefulness of quantum optics to applications in
communications as opposed to computation. (Neverthe-
less, two recent proposals [2,3] have resurrected the possi-
bility of quantum computation using purely linear optics.)
Therefore, work has focused on NMR [4], solid-state [5],
and atomic [6–9] proposals for quantum logic gates, but so
far none of these systems has demonstrated all of the de-
sired features such as strong coherent interactions, low de-
coherence, and straightforward scalability. Typical optical
nonlinearities are so small that the dimensionless efficiency
of photon-photon interactions rarely exceeds the order of
10210. We have recently used quantum interference to
enhance these nonlinearities by as much as 10 orders of
magnitude, leading to near-unit-efficiency sum-frequency
generation of individual photon pairs [10]. In this Let-
ter, we demonstrate that a similar experimental geome-
try can be used to make a conditional phase switch. Our
switch is very similar to an enhanced Kerr or cross-phase-
modulation effect, in which the presence or absence of a
single photon in one mode may lead to a significant phase
shift of the other mode. This is also similar to experiments
performed in cavity QED [6] (and to theoretical proposals
for atomic vapors, in systems relying on atomic coherence
effects [11] or photon exchange interactions [12]), but oc-
curs in a relatively simple and robust system relying only
on beams interacting in a nonresonant nonlinear crystal.

The controlled-phase or c-f gate performs the mapping
jm�1jn�2 ! exp�imnf� jm�1jn�2, where the subscripts 1
and 2 indicate the two qubits, stored in two distinct optical
modes, and m and n can take the values 0 and 1 repre-
senting zero- and one-photon states [13]. This shifts the
phase of j1�1j1�2 by f, leaving the other three basis states
unchanged. Although in quantum mechanics an overall
phase factor is meaningless, this unitary transformation is
nontrivial when we consider what happens to superposi-
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tions of photon number. The operation induces a relative
phase of f between the j0� and j1� states of qubit 2, if
and only if qubit 1 is in state j1�. (It is this relative phase
which is referred to as the “optical phase” of mode 2 [14].)

Since our experiment relies on interference, its opera-
tion is sensitive to the phase and amplitude of the initial
state, and we must limit ourselves to a specific set of inputs.
In particular, we illuminate our switch with two classical
fields in weak coherent states, jC� � ja� ≠ jb� � �j0�1 1
aj1�1� ≠ �j0�2 1 bj1�2�, for jaj, jbj ø 1. This state in-
cludes contributions of all four two-qubit computational-
basis states. As we show theoretically and experimentally,
the lowest-order action of the gate is to shift the phase of
only the j1�1j1�2 state, as desired for c-f operation.

This gate differs from the canonical c-f concept in sev-
eral regards. Principally, the input cannot be in a pure Fock
state (e.g., j1�1j1�2), or an arbitrary superposition of the
computational-basis states, because the appropriate relative
phase of j0�1j0�2 and j1�1j1�2 must be chosen at the outset.
Nevertheless, the gate produces significant entanglement
at the output and may be useful in nondeterministic opera-
tion [2]; in other words, it may be possible to postselect
the desired value of a given qubit rather than supplying
it at the input. Alternatively, such a gate might be used
in the polarization rather than the photon-number basis.
The interaction can be controlled through phase-matching
conditions such that the phase shift is impressed only
if both photons have, for example, vertical polarization.
Thus, two-photon entangled states as typically produced
in down-conversion systems, which are more properly
described as jC� � j0� j0� 1 ´�ajH� jH� 1 bjH� jV � 1
cjV � jH� 1 djV � jV ��, could store the amplitudes of the
four computational-basis states in the amplitudes a, b, c,
and d, with the (small) coefficient ´ ensuring that ´d ex-
hibits the appropriate phase relationship with the vacuum.
Although the vacuum term would dominate, as in most
down-conversion experiments, the computation would
have the desired effect contingent simply on the eventual
detection of a photon pair. Potential contamination due to
states outside the computational basis (e.g., states in which
two photons are present in the same mode) can be avoided
© 2002 The American Physical Society 037904-1
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by operating in the low-photon-number regime. Finally,
the question as to whether the entanglement produced by
these interactions might be useful as a generalized quan-
tum gate in some larger Hilbert space (e.g., higher photon-
number states) remains open.

Our experiment can be described as a modified Mach-
Zehnder interferometer (MZI) (Fig. 1). The input beam
is a weak laser pulse of frequency v (containing much
less than one photon per pulse on average) which enters
the interferometer and is split into the signal (mode 1)
and phase reference (mode 3). Modes 1 and 3 are recom-
bined at a beam splitter after mode 1 passes through a x �2�

nonlinear crystal which is simultaneously illuminated by
a pump beam at frequency 2v. The output fringes from
the MZI serve to measure the relative phase introduced be-
tween the two arms by the action of the crystal. Our con-
trol beam (mode 2) is another very weak coherent state
at v that crosses mode 1 inside the nonlinear crystal.
Photon-counting detectors monitor one output of the inter-
ferometer and mode 2. In order to demonstrate the condi-
tional phase operation of the device, we measure the phase
of the fringes at det. 1 and compare the cases in which the
control detector (det. 2) does or does not fire. This “con-
ditional homodyne” measurement [15] is similar to recent
studies of “wave-particle correlations” in cavity QED [16].

A more detailed schematic of the experiment is shown
in Fig. 2. The beam from a Ti:sapphire oscillator (center
wavelength 810 nm, rep rate 80 MHz, and pulse duration
50 fs) is used to create the four beams used in the experi-
ment. The phase reference, signal, and control beams are
created by separating a small amount of the fundamental
beam with beam splitters (BS) 3 and 1— all beam splitters
are 90	10 �T	R�. The signal and control beams are made
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FIG. 1. A cartoon of the experiment. The signal beam, a weak
�jaj ø 1� coherent state, is passed through a Mach-Zehnder in-
terferometer in order to measure the phase shift. This shift is
imprinted by a x�2� crystal pumped with a strong classical pump
(p), only when the control beam (also a weak coherent state with
mean photon number jbj2 ø 1) contains a photon. This condi-
tional phase operation is verified by correlating the MZ output
fringes at det. 1 with detection of a control photon at det. 2.
037904-2
by rotating the polarization after BS1 and treating the hori-
zontal and vertical components independently. All three
of these beams are subsequently attenuated using neu-
tral density filters. The majority of the pump undergoes
second-harmonic generation (SHG) in a type-I b-barium
borate (BBO) crystal. With the fundamental removed,
this 405-nm pulse serves as the pump laser for paramet-
ric down-conversion. The signal and control beams are
recombined with the pump laser at BS 4 and all three
beams are focused onto a second 0.5-mm BBO crystal
phase matched for type-II down-conversion and, therefore,
type-II SHG. The spot created on the down-conversion
crystal is imaged through a spatial filter to select a single
spatial mode [10]. The output from the spatial filter is
separated by a polarizing beam splitter (PBS) such that the
vertically polarized control beam is sent to detector 2 for
direct photodetection, while the horizontally polarized sig-
nal beam interferes with the phase reference at BS 2. De-
tector 1 measures the output from one port of BS 2. Both
detectors are silicon avalanche photodiodes. Interference
filters, with center wavelengths of 810 nm and bandwidths
of 10 nm, are placed in front of each detector.

In previous work [10], we demonstrated that quantum
interference leads to a phase-sensitive photon-pair produc-
tion rate in a similar geometry. The interference can be un-
derstood as follows. Initially, modes 1 and 2 contain weak
coherent states and mode p contains an intense (classical)
pump laser: jC� � jg�p ≠ �j00� 1 aj10� 1 bj10� 1

abj11��. Under the interaction Hamiltonian, Hint �
ga

y
1 a

y
2 ap 1 g�a1a2ay

p, the lowest order action of the
pump laser is simply to add an amplitude for a photon pair
through parametric down-conversion. The final state be-
comes jC� � jg�p ≠ �j00� 1 aj10� 1 bj01� 1 �ab 1

ADC� j11��, where ADC ~ gg is the amplitude for down-
conversion. In [10], we observed the modulation in the
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FIG. 2. Schematic of the experiment. BS 1–4 are 90	10
�T	R� beam splitters; SHG consists of two lenses and a 0.1-mm
BBO crystal for type-I second harmonic generation; l	2 are
half-wave plates; S.F. is a spatial filter; I.F. are interference
filters; BG is a blue filter; PBS is a polarizing beam splitter;
det. 1 and 2 are photon counters. The pump laser at 405 nm is
separated from the 810 nm light by using a fused-silica prism,
not shown for clarity.
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photon pair production rate by performing direct photon
coincidence counting on modes 1 and 2. We changed the
phase of the amplitude ADC by changing the delay of the
pump laser and, in so doing, changed the value of jab 1

ADCj
2 — the probability of producing a photon pair. How-

ever, this process also affects the phase of that amplitude,
i.e., arg�ab 1 ADC�. This is the “cross-phase modula-
tion” we study. The absolute phase of a state is never
experimentally observable; we therefore study the relative
phase between j11� and j01�, contrasting it with the case of
no control photon: j10� vs j00�. This relative phase is pre-
cisely the optical phase measured by our Mach-Zehnder
interferometer. The final state of modes 1 and 2 can be
rewritten as follows:

jC� � �j0�1 1 aj1�1� j0�2

1 b

∑
j0�1 1

µ
a 1

ADC

b

∂
j1�1

∏
j1�2 . (1)

In this form, it is evident that entanglement is generated be-
tween the photon number in mode 2 and the optical phase
in mode 1; the conditions that jaj, jbj ø 1 limit the state
to one of nonmaximal entanglement. Nonetheless, maxi-
mal entanglement can be produced in polarization within
the coincidence subspace [17]. When jADCj ø jabj,
(i.e., the down-conversion rate is much less than the “ac-
cidental” coincidence rate from the signal and control
beams) there is a small phase shift but, to first order, no
change in rate. In the opposite limit, when jADCj . jabj,
the maximum phase shift is 180± and occurs at the point
of maximum destructive interference.

To explore the small phase-shift regime, we adjusted our
signal and control beam intensities to obtain, in the absence
of interference, a coincidence rate of �256 6 3� s21 be-
tween det. 1 and det. 2. Our coincidence rate from down-
conversion alone was �4.7 6 0.2� s21. The singles rates
at det. 1 (again in the absence of interference) were 88 3

103 s21 from the signal beam alone and 79 3 103 s21

from the phase reference; det. 2 received a singles rate of
282 3 103 s21 from the control beam. This corresponds
to several photons per thousand laser pulses. The singles
rates due to down-conversion were 400 s21 at det. 1 and
300 s21 at det. 2. To perform the experiment, the phase
reference was blocked and pump delay moved in sub-
wavelength steps to observe fringes in the photon pair
production rate (described in [10]). The pump delay was
then stopped at a fixed phase relative to the maximum of
the pair-production fringes. We then scanned over a few
Mach-Zehnder interference fringes by stepping the refer-
ence delay in 0.04-mm steps and recorded the singles rates
at the two detectors and their coincidence rate. Because
of the low probability of having a photon in any given
control pulse, the interference fringes in det. 1’s singles
rate are dominated by the case where zero photons are
present in the control mode; the coincidence rate shows the
phase-shifted fringes when a control photon is detected.
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A sample data set is shown in Fig. 3 for a pump delay of
21.6 fs (about 2455±). For clarity, the fringes shown are
taken in the large phase-shift regime, with jADCj . jabj.
To achieve this regime, we reduced our coincidence rate
from the signal and control beams to �1.1 6 0.1� s21 in the
absence of interference; our down-conversion coincidence
rate was �5.2 6 0.2� s21. Det. 1 received about a 700 s21

singles rate from the signal and 8600 s21 from the phase
reference; det. 2 had a singles rate of 129 3 103 s21 from
the control beam. The coincidence counts have been av-
eraged over 40-sec intervals due to the considerable shot
noise. The fringes were fitted to cosine curves where the
period of the coincidence fringes was constrained to equal
that of the singles fringes. The phase difference was then
extracted modulo 360±.

Relative phases were measured in this way for many dif-
ferent pump phase delays; those values are summarized in
Fig. 4. The phase shifts measured for the low phase-shift
regime are the open circles (right-hand scale). The dashed
line is the theoretical prediction based on the experimen-
tally observed ratio of coincidence rates, with no adjustable
parameters. In this regime, the phase shift is limited to
approximately jADCj	jabj— about 8± for the experimen-
tal ratio of coincidence rates. The phase shift is approxi-
mately sinusoidal in the pump phase for this ratio. The
shifts in the large phase-shift regime are shown in Fig. 4
as solid circles (left-hand scale). Theory is shown as a
solid line and, again, involves no free parameters. It is
clear that in this regime we are able to access any phase
shift. In this regime, the phase shift does not follow a sinu-
soidal modulation but rather increases monotonically with
the pump phase, modulo 360±. There is strong agreement
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FIG. 3. Phase-shifted fringes in the large phase-shift regime.
The det. 1 singles rate (open squares, dashed line) and coinci-
dence rate between det. 1 and det. 2 (closed circles, solid line)
are shown as a function of the reference delay. The coinci-
dence fringes display the phase of the signal for cases in which
a control photon was present; the singles are dominated by
cases in which no photon was present. For this particular pump
phase, the coincidence counting rate lags the singles rate by
�65 6 8�±.
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FIG. 4. Phase shift versus pump phase delay. The phase of
the pump laser was changed via the pump delay and was esti-
mated using the accompanying modulation in the mean coinci-
dence rate [10]. The phase shift between the coincidence and
singles fringes is plotted against the pump phase delay for both
the large phase-shift regime (solid circles) and the small phase-
shift regime (open circles). The solid and dashed lines show the
theoretical predictions for these two cases, respectively, based
only on the measured ratio of the individual-path rates, and with
no adjustable parameters.

between theory and experiment, with slightly reduced
phase shifts in the low phase-shift regime possibly attrib-
utable to background.

We have demonstrated the correlation between the pho-
ton number in one mode and the optical phase in another
in a coherent conditional phase switch. Our theoretical de-
scription of the device shows that entanglement between
the two modes is generated, but explicit demonstration re-
quires additional measurements. This is a new type of
asymmetric entanglement [15], of the sort required for the
quantum c-f gate. However, our switch differs from the
c-f, since the switch’s reliance on quantum interference
makes it intrinsically dependent on the optical phase of
the input beams. While this phase dependence will not al-
low the gate to operate on Fock states, the gate does act
exactly as a c-f in the coincidence basis in some inter-
esting situations [17]. Methods such as the one described
in this Letter of creating and controlling entanglement at
the single-photon level are very exciting for the field of
nonlinear quantum optics and are promising steps towards
all-optical quantum computing.

The authors thank Andrew White, Christina Pencarski,
and Daniel Lidar for thought-provoking discussions. K. R.
acknowledges financial support of the Walter C. Sumner
037904-4
Foundation. This work was funded by Photonics Research
Ontario, NSERC, and by the U.S. Air Force Office of
Scientific Research (F49620-01-1-0468).

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems & Signal
Processing, Bangalore, India (IEEE, New York, 1984),
pp. 175–179; A. K. Ekert, J. G. Rarity, and P. R. Tapster,
Phys. Rev. Lett. 69, 1293 (1992); A. Muller, J. Breguet,
and N. Gisin, Europhys. Lett. 23, 383 (1993); W. T. Buttler
et al., Phys. Rev. Lett. 81, 3283 (1998); C. H. Bennett
et al., Phys. Rev. Lett. 70, 1895 (1993); D. Bouwmeester
et al., Nature (London) 390, 575 (1997).

[2] E. Knill, R. Laflamme, and G. Milburn, Nature (London)
409, 46 (2001).

[3] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64,
012310 (2001).

[4] N. A. Gershenfeld and I. A. Chuang, Science 275, 350
(1997); J. A. Jones, M. Mosca, and R. H. Hansen, Nature
(London) 393, 344 (1998); D. G. Cory et al., Phys. Rev.
Lett. 81, 2152 (1998).

[5] B. E. Kane, Nature (London) 393, 133 (1998).
[6] Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995);

A. Rauschenbeutel et al., Phys. Rev. Lett. 83, 5166 (1999).
[7] G. Nogues et al., Nature (London) 400, 239 (1999);

P. W. H. Pinkse et al., Nature (London) 404, 365 (2000).
[8] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995);

A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971
(1999); C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995).

[9] G. K. Brennen et al., Phys. Rev. Lett. 82, 1060 (1999);
D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000).

[10] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Rev.
Lett. 87, 123603 (2001); K. J. Resch, J. S. Lundeen, and
A. M. Steinberg, J. Mod. Opt. 49, 487 (2002).

[11] S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611
(1999); M. M. Kash et al., Phys. Rev. Lett. 82, 5229 (1999).

[12] J. D. Franson, Phys. Rev. Lett. 78, 3852 (1997).
[13] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, 2000), p. 294.

[14] R. Loudon, The Quantum Theory of Light (Clarendon
Press, Oxford, 1973), 2nd ed., pp. 141–144; J. W. Noh,
A. Fougères, and L. Mandel, Phys. Rev. Lett. 67, 1426
(1991).

[15] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Rev.
Lett. 88, 113601 (2002).

[16] G. T. Foster et al., Phys. Rev. Lett. 85, 3149 (2000).
[17] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, quant-ph/

0204034 [in Proceedings of the 2001 Solvay Conference
(to be published)].
037904-4


