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Abstract

The three-box problem is agedankenexperimentdesigned to elucidate some interesting features of quantum measur
and locality. A particle is prepared in a particular superposition of three boxes, and later found in a different (but nonorth
superposition. It was predicted that appropriate “weak” measurements of particle position in the interval between pre
and post-selection would find the particle in two different places, each with certainty. We verify these predictions in an
experiment and address the issues of locality and of negative probability.
 2004 Elsevier B.V. All rights reserved.
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Weak measurements have been controversial
since the concept was developed by Aharonov, Alb
and Vaidman (AAV) [1]. In contrast to the usual, vo
Neumann, approach to measurement, weak mea
ment uses an apparatus whose pointer has a very
quantum mechanical uncertainty when compared w
its typical shift. After the system-pointer interactio
the shift in the pointer position is much smaller than
initial uncertainty and almost no information is gain
about the quantum system. Nevertheless, after a
ficiently large number of measurements on an ens
ble of identically prepared quantum systems, the m
pointer position can be determined to any degree
precision. In such a measurement strategy, one s
fices knowledge of the value of an observable on
given experimental run to avoid entanglement with
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measurement device and the ensuing ‘collapse’ of
wavefunction. In particular, this makes it possible
contemplate the behavior of a system defined both
state preparation and by a later post-selection, with
significant disturbance of the system in the interven
period.

AAV [1] calculated the shift in the pointer o
a measurement apparatus that weakly measure
observableA between two strong measurements. T
initial strong measurement pre-selects (or prepa
the state|ψi〉 of the quantum system and the fin
strong measurement post-selects the quantum
|ψf 〉. The shift in the measurement pointer is on
considered for those cases in which both the p
and the post-selection succeed. In between, cons
a von Neumann-style interaction Hamiltonian of t
form

(1)HI = gÂP̂x,
.
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whereÂ is the Hermitian operator corresponding
an observableA of the quantum system,g is a (real)

coupling constant, and̂Px is the momentum operato
conjugate to the pointer position̂X. In the absence o
postselection, the effect of having this measurem
interaction on for a timeT (assumed short enough th
A is constant during the measurement) is to shift
pointer position by an amountx =K〈Â〉 ≡ gT 〈Â〉,
such that one can infer a value forA by dividing the
pointer shift by the interaction strengthK. The main
result of AAV’s seminal work [1] is that for sufficiently
weak coupling strengthK and in the presence o
postselection, the inferred value ofA is given by the
following expression, which they called the “wea
value”:

(2)AW = 〈ψf |Â|ψi〉
〈ψf |ψi〉 .

When the two strong measurements pre- and p
select the same state,AW reduces to the usual qua
tum mechanical expectation value for the operatorÂ.
However when the pre- and post-selected states
fer, weak values can take on surprising values that
not constrained to lie within the eigenvalue spectr
of the operator or even to be real numbers. The
prising character of weak values has led to skeptic
about whether they should be considered proper m
surements [2–4]. In spite of their controversial natu
weak measurements have been experimentally dem
strated [5]; in addition, they have been useful in c
rectly describing or predicting surprising experimen
outcomes [1,6–11].

The “quantum box problem” was developed
Aharonov and Vaidman [12,13]; it is a deceptive
simple thought experiment that elucidates some of
odd behavior which may result from studying po
selected systems. In the 3-box version, a particl
prepared in an equally weighted superposition of
ing in one of three orthogonal quantum “boxes”,A,B,
andC, i.e., |ψi〉 = √

1/3|A〉 + √
1/3|B〉 + √

1/3|C〉
and post-selected in the final state|ψf 〉 = √

1/3|A〉 +√
1/3|B〉 − √

1/3|C〉. The probability for a particle
to be in boxA can be found by evaluating the e
pectation value of the projector|A〉〈A|. We term the
‘weak probability for the particle to be in boxA’ the
weak value of the same projector and use the sh
handPAW . This weak probability should predict th
average magnitude of the effect of the particle
-

a pointer coupled only to boxA, in those cases wher
the post-selection succeeds. We find this quantity
inserting the projection operator|A〉〈A| in Eq. (2), i.e.,
PAW = 〈ψf |A〉〈A|ψi〉/〈ψf |ψi〉 = +1. In this case
the pointer shift is the same as in the case when
particle was definitely in boxA. Note that these wea
probabilities do not directly describe frequencies
events, but the outcomes of indirect measurem
of probability on an ensemble (e.g., charge or
ergy density). This weak probability is already stran
since a strong measurement would find the particl
boxA only |1/√3|2 = 1/3 of the time. Through a sim
ilar calculation, the weak probability for the particle
boxB, PBW , is also found be+1. Like normal prob-
abilities, the sum of all weak probabilities is+1 (be-
cause the sum of all orthogonal projectors is the id
tity); therefore, if one performs a weak measurem
of the particle in boxC one finds the weak probability
PCW = 〈ψf |C〉〈C|ψi 〉/〈ψf |ψi〉 = −1. Such a resul
is very strange since it lies outside the range of eig
values for projection operators and normal probab
ties, i.e., it does not lie between 0 and 1. Neverthel
for a large enough ensemble of identically prepa
and post-selected states, this result properly pred
the outcome of our experiment. Note that while app
ently similar to the situation for quasi-probability di
tributions such as the Wigner function, this case is
ferent, referring instead to a directly observable m
surement outcome. There are also other situation
which it has been suggested that negative proba
ties might be useful for resolving locality “paradoxe
[14]. For a review of such extensions to probabil
theory, see [15].

We use a linear optical interferometer to implem
the quantum box problem (Fig. 1). This interferome
is similar to the Mach–Zehnder interferometer exc
that it has three optical paths (or rails) instead
two; we label these railsA, B, and C. A photon
can be prepared in any superposition of these th
rails by proper selection of the characteristics
beamsplitters BS1 and BS2. Similarly, any coher
superposition can be post-selected by controlling
characteristics of BS3, BS4, and the optical p
lengths (relative phases). In practice, we study a la
ensemble of such photons, prepared in a coherent
from a laser. In the linear interferometer, the photo
behave independently, and the intensity-measurem
we perform yield the probability distribution of thes
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Fig. 1. The 3-rail Mach–Zehnder-style interferometer. The TEM00
mode of a diode laser is filtered spatially using a 25 µm pinhole,
lenses (f = 5 cm andf = 2.5 cm), and an iris. Light is placed i
the proper coherent superposition of each of the rails labelledA, B,
andC using half-wave plates (λ/2) and polarizing beam-splitter
(PBSs). Glass plates (GPs) in each arm are used to displace
beam transverse to its direction of propagation, and microsc
slides (MS) are used to finely adjust the phases in armsA andC.
The three modes are recombined at two 50/50 beamsplitters (BS3
and BS4). The beam shines on a screen and a CMOS camera b
that screen captures its image. A photodiode (PD) in the second
of BS4 is used to set the relative phases light in the different rai

photons—such measurements in linear systems
guaranteed to be the same for coherent state
for single-photon or other quantum states [16].
use the transverse displacement of the photon as
measurement pointer. Measurements are carried
by tilting one of the glass plates (GPA, B, or C);
this results in a controllable transverse shift of
beam in one of the rails. For example, a glass p
in rail A displacing the beam alongX can be though
of in terms of an effective interaction Hamiltonian
the formg|A〉〈A|P̂X . The measurement of the me
spatial shift of an ensemble of photons can be view
as a measurement of the probability for each photo
have been in railA. If the transverse shift is much les
than the beam size (the uncertainty in the position
the individual photons), this is a weak measurem
Shifting only one rail at a time, we measure t
size of that shift while keeping the other two ra
blocked. This characterizes the strengthKA of the
system-pointer interaction. We then combine all th
beams with the correct relative phases for proper p
selection and again measure the shiftx. The ratio
of the shift in the post-selected state to that of
r
t

single rail constitutes our weak probability for th
rail, PAW = x/KA. A negative weak probability is
realized when the shift in the post-selected state i
theopposite directionto the shift on the individual rail

For the experiment, light from a 780 nm, 30 mW
diode laser is spatially filtered to yield a collimat
TEM00 Gaussian beam with a waist of 380 µm.
create the appropriate superposition, the transmiss
and reflectivity of each beam-splitter is adjusted
using two half-wave plates (λ/2) prior to polarizing
beam-splitters (PBS). The third half-wave plate
present to rotate the polarization in railC from
horizontal to vertical so that all three rails have t
same polarization. Glass plates (GP) with thicknes
10, 6.5, and 10 mm are situated in pathsA, B, and
C, respectively. The plate in railA displaces the
beam in the vertical direction (out of the plane
the inteferometer) while the plates in railsB andC
displace the beam in the horizontal direction (in
plane of the interferometer). In addition to these gl
plates, 1 mm-thick microscope slides are located
railsA andC. These plates can also be finely tilted
set the relative phases,φA andφC , between the ligh
in these arms with that in railB without significantly
displacing the beam. RailsA andB are recombined
coherently at beam splitter 3 (BS3). One of the outp
from BS3 is then recombined with the light from ra
C at BS4. The phases are chosen such that the
in the right-going output of BS4 is our desired po
selected state. This beam is magnified by a factor
on a screen behind which a CMOS camera (Logit
Quickcam) captures beam images. The second ou
of BS4 terminates at a photodiode that is used to se
relative phases of the three arms of the interferome

The quantum box problem can be generaliz
for an arbitrary pre-selected state|ϕi〉 = ai |A〉 +
bi |B〉 + ci |C〉 and post-selected state|ϕf 〉 = af |A〉 +
bf |B〉 − cf |C〉. If the coefficients are real number
we obtain the same weak values discussed earlie
railsA, B, andC if aiaf = bibf = cicf , albeit with
a lower overlap between our pre- and post-selec
states. These requirements can be converted
experimental parameters in the following way. Giv
reflection and transmission amplitudesri exp(iφri)
andti exp(iφti) for BSi, the 3-path interferometer pre
selects the state|ϕi〉 = r1|A〉 + t1r2|B〉 + t1t2|C〉; the
phases are compensated for by optical path leng.
For the proper phase settings, the interferometer p
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selects the state|ϕf 〉 = t3r4|A〉 + r3r4|B〉 − t4|C〉.
To satisfy the conditionaiaf = bibf = cicf , we
requirer1t3r4 = t1r2r3r4 = t1t2t4. This is the condition
that each path contributes the same intensity in
camera output port. In our experiment, the fin
beamsplitters are both 50/50, and therefore our pos
selected state is approximately|ϕf 〉 = (1/2)|A〉 +
(1/2)|B〉 − (1/

√
2)|C〉. The proper pre-selected sta

to obtain the desired weak values is|ϕi〉 = √
2/5|A〉+√

2/5|B〉 + √
1/5|C〉. We note that this reduces th

overlap of the initial and final states from 1/3 for the
original states to

√
1/10.

The data for this experiment were taken in tw
parts. In both parts, we began by balancing
intensities in the camera arm from the three pa
and aligned the beams in the interferometers s
that they overlapped to better than 1/10 of their rms
widths. All of the beams in the interferometer we
vertically polarized. Pairwise, beamsA&B andB&C
had interference fringe visibilities of about 95%.
the first part of the experiment we performed on
single weak measurements on each of the 3 r
A single glass plate (GP) in one of the arms was til
to displace the beam in that path. The phases in
interferometers were set using the microscope sl
so that pathsA and B interfere constructively an
pathsB andC interfere destructively in the came
output. Images of each individual beam (in the abse
of interference) and the properly post-selected be
were recorded using the camera. In Fig. 2, horizo
profiles are shown, with a particular displacemen
rail C, for the beams in railsA (thin solid line),B
(thin dashed line), andC (thick dashed line) alone
and also for the post-selected state (thick solid lin
BeamsA andB have the same average position
within less than 1 pixel, or about 1/20 of the rms
width. BeamC has been displaced from this cen
position by−11.1 pixels or−0.69 rms widths. This
is the coupling strengthKC . The post-selected sta
beam profile is displaced by+7.0 pixels or+0.44 rms
widths in theoppositedirection of rail C; in other
words, the observed valuex/KC = −0.64. This
differs from the expected valuePCW = −1 because
the displacement is already approaching the trans
from the weak to the strong measurement regime.

We have summarized our results for post-selec
measurements ofPA, PB , andPC for a variety of cou-
pling strengths in Fig. 3. The observed displaceme
Fig. 2. Sample experimental data when only railC is displaced.
We show experimental data for individual horizontal beam profi
from rails A (thin solid line),B (thin dashed line), andC (thick
dashed line) when a transverse, horizontal displacement of b
C is applied. The beam profile of the post-selected beam is
shown (thick solid line). The beam profile from railC is displaced
by −11.1 pixels, or−0.69 rms widths, which constitutes a measu
of the coupling strengthKC . The corresponding shiftx in the
post-selected beam is+7.0 pixels, or+0.44 rms widths, implying
a probability ofPC = −0.64. (This is smaller than the expecte
PCW = −1 because in this image, the coupling strength is too la
for a true weak measurement. This image is shown for clarity, w
Fig. 3 summarizes the data for weaker couplings as well, where
agreement with weak-measurement theory is good.)

x for measurements ofPA and PB are shown as
open circles and solid triangles, respectively, as a fu
tion of K{A,B}. The theoretical prediction for thes
two rails is a straight line with a slope of 1 and
y-intercept of 0. The slope of 1 indicates a shift a
large as if all the photons had traversed the shi
rail, that is,PAW = PBW = 1. Note that this slope o
1 persists even into the strong-measurement reg
K{A,B} > 1 rms width. This can be understood fro
the following argument. If we perform a weak me
surement on railA, then in our post-selection outp
the amplitudes from railsB andC interfere perfectly
destructively and we are left only with the field fro
rail A. Therefore, whatever displacement railA has,
so will the post-selected state [13]. Of course a sim
argument can be constructed for railB. The data for
rail C have different behaviour and no such argum
applies. The experimental data are shown as solid
cles and the theoretical prediction as a solid line. N
zero displacement of the rail, the displacement of
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Fig. 3. Experimental data for individual rail displacements. T
displacement of the post-selected state is shown as a functio
the displacement of each individual rail. The data for railsA, B,
andC are shown as open circles, solid triangles, and solid circ
respectively. Theory (with no adjustable parameters) is show
a dashed line for railsA andB and as a solid line for railC. The
transition for the displacement of railC from the weak measuremen
regime to the strong measurement regime is clearly visible
beam displacement of about±1 rms width. No such transition wa
observed or predicted for the other two rails.

post-selected state is in the direction opposite to tha
rail C. The weak probabilities are given by the slop
of the curves from the plot in Fig. 3 near the orig
The weak probabilities are consistent with the pred
tions of +1, +1, and−1 for PAW , PBW , andPCW ,
respectively. For larger displacements in railC, the
weakness criterion is not satisfied, and the obse
shifts eventually approach a strong-measurement l
of 1/5 [17]. We point out that this effect has a sim
ple classical optical explanation as well, and that
strange features of weak measurements all arise
interference which, although less intuitive in the m
tiparticle setting, is precisely analogous to the pres
case.

We have shown that the weak probability to fi
a particle in railA is +1, as is the weak probabilit
to find the particle in railB. This begs the question
what is the weak probability to find the particle in bo
arms? It is well known that a single particle cann
trigger two different spacelike separated detectors
fact one might think of that as the defining quality
a particle—it must be either here or there but ne
both. Therefore, one would never expect to find
single photon in both railsA and B via projective
measurements. It has been suggested, however
this is a limitation of strong measurements; if a parti
is prepared in a suitably delocalized state, might it
possible to find that particle in two different places
the same time if the presence of the particle is pro
weakly [18]?

As |A〉〈A| and|B〉〈B| describe the probabilities fo
a particle to be in railA and railB, respectively, the
joint probability for it to be in both would be describe
by the product|A〉〈A|B〉〈B|. The corresponding mea
surement interaction would be a non-local one, an
not available in typical experimental situations. (Ne
ertheless, proposals [10,20] do exist for addressing
problem directly or indirectly, and future experimen
work will focus on indirect measurement of such c
relations based on [20].) It is interesting to note t
in this specific case,|A〉 and |B〉 are orthogonal, and
the operator of interest therefore vanishes identica
The theoretical prediction is that the weak probabi
to find the particle in both rails is expected to be z
even though the single weak probabilities (i.e.,PAW
andPBW ) are both equal to 1. This seeming violati
of the standard rules of probability can be seen to
related to the relaxation of the nonnegativity axiom
probability theory [8,19].

Even without the ability to measure this joint we
probability directly, it is possible to address the iss
of seeming nonlocality. In the second part of t
experiment, we performed two different simultaneo
measurements on the photons using two differ
degrees of freedom at the same time. In addition
the transverse beam displacement in railB, we used
the waveplate in railC (see Fig. 1) just before BS4 t
rotate the polarization of the light by a small amou
We prepared the same initial state as before but u
different final state,|ψf 2〉 = −(1/2)|A〉+ (1/2)|B〉+
(1/

√
2)|C〉. Such a final state swaps the roles of ra

A and C so thatPAW = −1 andPCW = +1. The
reason for doing so was purely technical: Our fi
beamsplitters were 50/50 for vertically-polarized light
but for horizontally-polarized light they had great
than 90% transmission. We ensured that railC, where
the polarization rotation occurs, was transmitted ra
than reflected, so that the observable polarization s
at the camera would not be negligibly small. W
rotated the waveplate in railC by a small amount tha
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resulted in aKC = 9.6◦ rotation in the polarization o
the lightafter the final beamsplitter when railsA and
B were blocked.

We measured the displacement,x, of the post-
selected state as a function of the rail-B coupling
strengthKB . The results,x/KB , are the inferred
probabilities of the photon to be in railB and are
shown in Fig. 4, both in the case of no final p
larizer (solid circles, solid line theory) and in th
case of a final polarizer oriented to block vertical
polarized light (open circles, long-dashed line theo
To generate the theoretical curves, we calculated
horizontally- and vertically-polarized amplitudes
the post-selected state for three Gaussian beams
the proper phase relationships—one from each ra
and extracted the average polarization rotation and
average displacement of the intensity distribution w
and without the polarizer. Note that the weak pro
ability for rail B is not equal to 1 even in the limit o
zero displacement; this is due to imperfect interfere
from the nonweakness of the polarization rotation.

Recall that all of the beams in the interferome
initially had vertically-polarized light. When the pola
izer was inserted to block vertically-polarized light w
measured the beam displacement of only the light
had its polarization rotated, i.e., only photons wh
had traversed railC. We also show the inferred prob
bility of the photon to be in railC—given by the polar-
ization rotation of the final state divided byKC = 9.6◦
(open triangles, dotted line theory). The low data po
for thePB was most likely due to a mode-hop-induc
phase fluctuation, and the slight disagreement betw
the theory and experimental values forPC is from
imperfect interference. These data show, that for
placements of railB in the weak regime (less tha
0.5 rms widths), the entire distribution of the light
both displaced and polarization rotated as if the p
tons really experience both weak measurements. H
ever, by blocking all of the vertically-polarized ligh
we clearly see that the distribution is not shifted at
Therefore we can say that once a strong measure
(the polarizer) determines that a particle wasdefinitely
in rail C, even the weak value of its probability to b
in rail B vanishes.

We have implemented the quantum box problem
a 3-rail interferometer and verified some of the i
portant predictions about the weak measurements
can perform in this system. Specifically, we have
t

Fig. 4. The weak probabilities for the photon to be in railB and
rail C measured in the same experimental setup using two diffe
pointers. The weak probability for the photon to be in railC was
measured using a small polarization rotation, and the probability
rail B was measured with a transverse beam displacement.
are shown as functions of the displacement of railB, with the
polarization rotation kept fixed. The resulting polarization rotatio
and displacements in the post-selected states were converte
weak probabilities by dividing by the relevant interaction streng
The resulting weak probabilities for railsB andC are shown as solid
circles (solid line theory) and open triangles (dotted line theo
For very weak measurements, the entire post-selected sta
polarization rotated and displaced, by amounts which would im
that each photon was both in railC and railB with certainty. (Note
that the theoretical weak probability for railB is always slightly
below 1; this is due to the nonweakness of the 9.6◦ polarization
rotation.) However, when an additional polarizer is inserted to bl
vertically-polarized light in the post-selected state output (such
the only detected photons were polarization-rotated in railC) we
find the remaining photons are not displaced; the weak probab
for the photon to have been in railB to be zero (open circles, dashe
line theory). Thus, those photons that were definitely in railC were
definitely not in railB.

served weak probabilities of+1 for railsA andB and
a weak probability of−1 for railC. We have also stud
ied the transition out of the weak-measurement reg
for rail C, when the interaction shifts the measurem
pointer by more than about 0.5 rms widths. In ad
tion, we performed two simultaneous measureme
on two of the rails using polarization and transve
displacement as pointers. For small displacements
found that the entire beam was shifted and polariza
rotated. However, when only the polarization-rota
light was studied, its transverse displacement
zero. This shows the (one-sided) anticorrelation
tween a strong measurement of the particle in one
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and a weak measurement of it in another. This lea
open the question of what one would observe by m
ing joint weak measurementson two different rails.
In another work, we have proposed an experiment
feasible method for performing such measureme
[20], and an ongoing experiment aims to carry th
out for the 3-box problem. These types of concep
ally simple experiments yield insight into the som
times shocking behavior of post-selected subens
bles in quantum mechanics, and into the power
the limitations of weak measurements.
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