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Abstract

The three-box problem is gedankenexperimerdesigned to elucidate some interesting features of quantum measurement
and locality. A particle is prepared in a particular superposition of three boxes, and later found in a different (but nonorthogonal)
superposition. It was predicted that appropriate “weak” measurements of particle position in the interval between preparation
and post-selection would find the particle in two different places, each with certainty. We verify these predictions in an optical
experiment and address the issues of locality and of negative probability.

0 2004 Elsevier B.V. All rights reserved.

Weak measurements have been controversial evermeasurement device and the ensuing ‘collapse’ of the
since the concept was developed by Aharonov, Albert, wavefunction. In particular, this makes it possible to
and Vaidman (AAV) [1]. In contrast to the usual, von contemplate the behavior of a system defined both by
Neumann, approach to measurement, weak measurestate preparation and by a later post-selection, without
ment uses an apparatus whose pointer has a very largesignificant disturbance of the system in the intervening
guantum mechanical uncertainty when compared with period.
its typical shift. After the system-pointer interaction, AAV [1] calculated the shift in the pointer of
the shift in the pointer position is much smaller thanits a measurement apparatus that weakly measured an
initial uncertainty and almost no information is gained observabled between two strong measurements. The
about the quantum system. Nevertheless, after a suf-initial strong measurement pre-selects (or prepares)
ficiently large number of measurements on an ensem-the state|y;) of the quantum system and the final
ble of identically prepared quantum systems, the mean strong measurement post-selects the quantum state
pointer position can be determined to any degree of |y ;). The shift in the measurement pointer is only
precision. In such a measurement strategy, one sacri-considered for those cases in which both the pre-
fices knowledge of the value of an observable on any and the post-selection succeed. In between, consider
given experimental run to avoid entanglement with the a von Neumann-style interaction Hamiltonian of the

form
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where A is the Hermitian operator corresponding to a pointer coupled only to box, in those cases where
an observablel of the quantum systeny, is a (real) the post-selection succeeds. We find this quantity by

coupling constant, ané, is the momentum operator  inserting the projection operatpt) (Al in Eq. (2),i.e.,
conjugate to the pointer positioXi. In the absence of ~ Paw = (¥ r|A)(AIY:)/(¥rlYi) = +1. In this case,
postselection, the effect of having this measurement the pointer shift is the same as in the case when the
interaction on for a timg (assumed short enoughthat particle was definitely in box. Note that these weak

A is constant during the measurement) is to shift the Probabilities do not directly describe frequencies of

~ ~

pointer position by an amourtx = K (A) = gT (A), events, but the outcomes of indirect measurements
such that one can infer a value farby dividing the ~ Of probability on an ensemble (e.g., charge or en-
pointer shift by the interaction streng#. The main ~ €rgy density). This weak probability is already strange
result of AAV's seminal work [1] is that for sufficiently ~ Since a strong m%asurement would find the particle in
weak coupling strengttk and in the presence of DOXA only|1/+/3]?=1/3 of the time. Through a sim-

postselection, the inferred value afis given by the ilar calculation, the weak probability for the particle in
following expression, which they called the “weak bPOX B, Ppw, is also found bet1. Like normal prob-
value™ abilities, the sum of all weak probabilities 4s1 (be-
A cause the sum of all orthogonal projectors is the iden-
= M 2 tity); therefore, if one performs a weak measurement
(Yrlvi) of the particle in boxC one finds the weak probability,

When the two strong measurements pre- and post- Pcw = (Y ¢|C){C|yi)/{¥r|y¥i) = —1. Such a result
select the same statd,y reduces to the usual quan- is very strange since it lies outside the range of eigen-
tum mechanical expectation value for the operator  values for projection operators and normal probabili-
However when the pre- and post-selected states dif- ties, i.e., it does not lie between 0 and 1. Nevertheless,
fer, weak values can take on surprising values that are for a large enough ensemble of identically prepared
not constrained to lie within the eigenvalue spectrum and post-selected states, this result properly predicts
of the operator or even to be real numbers. The sur- the outcome of our experiment. Note that while appar-
prising character of weak values has led to skepticism ently similar to the situation for quasi-probability dis-
about whether they should be considered proper mea-tributions such as the Wigner function, this case is dif-
surements [2—4]. In spite of their controversial nature, ferent, referring instead to a directly observable mea-
weak measurements have been experimentally demonsurement outcome. There are also other situations in
strated [5]; in addition, they have been useful in cor- which it has been suggested that negative probabili-
rectly describing or predicting surprising experimental ties might be useful for resolving locality “paradoxes”
outcomes [1,6-11]. [14]. For a review of such extensions to probability
The “quantum box problem” was developed by theory, see [15].
Aharonov and Vaidman [12,13]; it is a deceptively We use a linear optical interferometer to implement
simple thought experiment that elucidates some of the the quantum box problem (Fig. 1). This interferometer
odd behavior which may result from studying post- is similar to the Mach—Zehnder interferometer except
selected systems. In the 3-box version, a particle is that it has three optical paths (or rails) instead of
prepared in an equally weighted superposition of be- two; we label these railsA, B, and C. A photon
ing in one of three orthogonal quantum “boxea4’,B, can be prepared in any superposition of these three
andC, i.e., |v;) = /1/3|A) + V/1/3|B) + /1/3|C) rails by proper selection of the characteristics of
and post-selected in the final state;) = «/1/3|A) + beamsplitters BS1 and BS2. Similarly, any coherent
/1/3|B) — /1/3|C). The probability for a particle ~ superposition can be post-selected by controlling the
to be in boxA can be found by evaluating the ex- characteristics of BS3, BS4, and the optical path
pectation value of the projectdoA)(A|. We term the lengths (relative phases). In practice, we study a large
‘weak probability for the particle to be in bat’ the ensemble of such photons, prepared in a coherent state
weak value of the same projector and use the short- from a laser. In the linear interferometer, the photons
hand P4w. This weak probability should predict the behave independently, and the intensity-measurements
average magnitude of the effect of the particle on we perform yield the probability distribution of these
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Diode Laser single rail constitutes our weak probability for that
rail, Paw = Ax/K 4. A negative weak probability is
— _}Spaﬁal Filter realized when the shift in the post-selected state is in
theopposite directioto the shift on the individual rail.
N2 GP A For the experiment, light from a 780 nm, 30 mW,
BS1, PBS = diode laser is spatially filtered to yield a collimated
- TEMgp Gaussian beam with a waist of 380 um. To
A2 GPB MS, 0a _ . o
s create the appropriate superposition, the transmissivity
BS2, PBS > and reflectivity of each beam-splitter is adjusted by
A2 N BS3,50/50 using two half-wave plates\(2) prior to polarizing
GPC BS4, Camera . . .
. B /N 50500\ beam-splitters (PBS). The third half-wave plate is
s | | V/4 “\J present to rotate the polarization in rail from
MS, ¢c UPD  Screen horizontal to vertical so that all three rails have the

same polarization. Glass plates (GP) with thicknesses
Fig. 1. The 3-rail Mach-Zehnder-style interferometer. The 5gM 10, 6.5, and 10 mm are situated in pathsB, and
mode of a diode laser is filtered spatially us_inga_ZS Hm pinhole,_ two C, respectively. The pIate in raid displaces the
lenses ¢ =5 cm andf =25 cm), and an iris. Light is placed in - a5 i the vertical direction (out of the plane of
the proper coherent superposition of each of the rails labelles, . . . .
and C using half-wave platesA(2) and polarizing beam-splitters the inteferometer) while the plates in raits and C
(PBSs). Glass plates (GPs) in each arm are used to displace eachdisplace the beam in the horizontal direction (in the
beam transverse to its direction of propagation, and microscope plane of the interferometer). In addition to these glass
slides (MS) are used to finely adjust the phases in atnad C. plates, 1 mm-thick microscope slides are located in

The three modes are recombined at twg&Dbeamsplitters (BS3 : : :
and BS4). The beam shines on a screen and a CMOS camera behinJalls A andC. These plates can also be fmely tiited 1o

that screen captures its image. A photodiode (PD) in the second port SEt the relative F_Jhase% and‘PCg betwe_en the light
of BS4 is used to set the relative phases light in the different rails.  iN these arms with that in rai# without significantly

displacing the beam. Raila and B are recombined
photons—such measurements in linear systems arecoherently at beam splitter 3 (BS3). One of the outputs
guaranteed to be the same for coherent states asrom BS3 is then recombined with the light from rail
for single-photon or other quantum states [16]. We C at BS4. The phases are chosen such that the light
use the transverse displacement of the photon as ourin the right-going output of BS4 is our desired post-
measurement pointer. Measurements are carried outselected state. This beam is magnified by a factor of 3
by tilting one of the glass plates (GR, B, or C); on a screen behind which a CMOS camera (Logitech
this results in a controllable transverse shift of the Quickcam) captures beam images. The second output
beam in one of the rails. For example, a glass plate of BS4 terminates at a photodiode that is used to set the
in rail A displacing the beam along can be thought  relative phases of the three arms of the interferometer.
of in terms of an effective interaction Hamiltonian of The quantum box problem can be generalized
the formg|A)(A|13x. The measurement of the mean for an arbitrary pre-selected state;) = a;|A) +
spatial shift of an ensemble of photons can be viewed b;|B) + ¢;|C) and post-selected staigs) = ar|A) +
as a measurement of the probability for each photonto b¢|B) — c¢|C). If the coefficients are real numbers,
have been in raill. If the transverse shift is much less we obtain the same weak values discussed earlier for
than the beam size (the uncertainty in the position of rails A, B, andC if a;ay = b;bs = c;cy, albeit with
the individual photons), this is a weak measurement. a lower overlap between our pre- and post-selected
Shifting only one rail at a time, we measure the states. These requirements can be converted into
size of that shift while keeping the other two rails experimental parameters in the following way. Given
blocked. This characterizes the strendth of the reflection and transmission amplitudesexp(i¢,;)
system-pointer interaction. We then combine all three andt; exp(i¢y;) for BSi, the 3-path interferometer pre-
beams with the correct relative phases for proper post- selects the stati;) = r1|A) + t1r2| B) + t112|C); the
selection and again measure the siift. The ratio phases are compensated for by optical path lengths
of the shift in the post-selected state to that of the For the proper phase settings, the interferometer post-
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selects the stat@p ;) = rars|A) + rara|B) — t4|C).

To satisfy the conditiorw;ay = bjbs = cicy, we
requireritara = t1ror3ra = titat4. Thisis the condition
that each path contributes the same intensity in the
camera output port. In our experiment, the final
beamsplitters are both 380, and therefore our post-
selected state is approximately ;) = (1/2)|A) +
(1/2)|B) — (1/+/2)|C). The proper pre-selected state
to obtain the desired weak valuesds) = /2/5|A) +
V2/5|B) + 4/1/5|C). We note that this reduces the
overlap of the initial and final states froma for the
original states tq/1/10.

The data for this experiment were taken in two
parts. In both parts, we began by balancing the
intensities in the camera arm from the three paths
and aligned the beams in the interferometers such
that they overlapped to better thapplD of their rms
widths. All of the beams in the interferometer were
vertically polarized. Pairwise, beamst B and B& C
had interference fringe visibilities of about 95%. In
the first part of the experiment we performed only
single weak measurements on each of the 3 rails.
A single glass plate (GP) in one of the arms was tilted

to displace the beam in that path. The phases in the
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Fig. 2. Sample experimental data when only r@ilis displaced.

We show experimental data for individual horizontal beam profiles
from rails A (thin solid line), B (thin dashed line), and” (thick
dashed line) when a transverse, horizontal displacement of beam
C is applied. The beam profile of the post-selected beam is also
shown (thick solid line). The beam profile from rail is displaced

by —11.1 pixels, or—0.69 rms widths, which constitutes a measure
of the coupling strengttK . The corresponding shifAx in the
post-selected beam i57.0 pixels, or+0.44 rms widths, implying

a probability of Pc = —0.64. (This is smaller than the expected
Pcw = —1 because in this image, the coupling strength is too large
for a true weak measurement. This image is shown for clarity, while

interferometers were set using the microscope slides Fig. 3 summarizes the data for weaker couplings as well, where the

so that pathsA and B interfere constructively and
paths B and C interfere destructively in the camera

output. Images of each individual beam (in the absence

of interference) and the properly post-selected beam
were recorded using the camera. In Fig. 2, horizontal
profiles are shown, with a particular displacement of
rail C, for the beams in railsA (thin solid line), B
(thin dashed line), and” (thick dashed line) alone,
and also for the post-selected state (thick solid line).
BeamsA and B have the same average position to
within less than 1 pixel, or about/20 of the rms
width. BeamC has been displaced from this centre
position by —11.1 pixels or—0.69 rms widths. This
is the coupling strengttk . The post-selected state
beam profile is displaced by7.0 pixels or+0.44 rms
widths in theoppositedirection of rail C; in other
words, the observed valuax/K¢c = —0.64. This
differs from the expected valugcy = —1 because
the displacement is already approaching the transition
from the weak to the strong measurement regime.

We have summarized our results for post-selected
measurements at,, Pg, andP¢ for a variety of cou-
pling strengths in Fig. 3. The observed displacements

agreement with weak-measurement theory is good.)

Ax for measurements oP4 and Pg are shown as
open circles and solid triangles, respectively, as a func-
tion of K4, p). The theoretical prediction for these
two rails is a straight line with a slope of 1 and a
y-intercept of 0 The slope of 1 indicates a shift as
large as if all the photons had traversed the shifted
rail, that is, Pow = Ppw = 1. Note that this slope of

1 persists even into the strong-measurement regime,
K4,y > 1 rms width. This can be understood from
the following argument. If we perform a weak mea-
surement on rail4, then in our post-selection output
the amplitudes from rail8 andC interfere perfectly
destructively and we are left only with the field from
rail A. Therefore, whatever displacement railhas,

so will the post-selected state [13]. Of course a similar
argument can be constructed for r&il The data for
rail C have different behaviour and no such argument
applies. The experimental data are shown as solid cir-
cles and the theoretical prediction as a solid line. Near
zero displacement of the rail, the displacement of the
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2? """" R both. Therefore, one would never expect to find a
: : S’ single photon in both railsA and B via projective
P ¢ measurements. It has been suggested, however, that
by ] this is a limitation of strong measurements; if a particle
/ is prepared in a suitably delocalized state, might it be
: ‘ possible to find that particle in two different places at
e the same time if the presence of the particle is probed
a7 ] weakly [18]?
4l 5 ERWe‘ak : As|A)(A| and|B)(B| describe the probabilities for
| S, cnegmes ‘ a particle to be in raild and rail B, respectively, the
‘ . : : joint probability for it to be in both would be described
) [ ’ R ‘ | by the productA)(A|B)(B|. The corresponding mea-
3 2 R 0 1 5 surement interaction would be a non-local one, and is
Displacement of Individual Rail not available in typical experimental situations. (Nev-
(Units of RMS Width) ertheless, proposals [10,20] do exist for addressing this
problem directly or indirectly, and future experimental
Fig. 3. Experimental data for individual rail displacements. The work will focus on indirect measurement of such cor-
displa}cement of the post-s'ele'c.ted statg is shown as a function of relations based on [20].) It is interesting to note that
the displacement of each individual rail. The data for ralsB, . . e
and C are shown as open circles, solid triangles, and solid circles, in this specific C,ase'A) and|B) are othogonaI, a_nd
respectively. Theory (with no adjustable parameters) is shown as the operator of interest therefore vanishes identically.
a dashed line for railst and B and as a solid line for raiC. The The theoretical prediction is that the weak probability
transition for the displacement of r&il from the weak measurement  to find the particle in both rails is expected to be zero
regime .to the strong measurement. regime is clearly _vjsible ata ayen though the single weak probabilities (i-BA,W
beam displacement of abotitl rms width. No such transition was . . . .
observed or predicted for the other two rails. and Py ) are both equal to 1. T_h.IS seeming violation
of the standard rules of probability can be seen to be
related to the relaxation of the nonnegativity axiom of
post-selected state is in the direction opposite to that of probability theory [8,19].
rail C. The weak probabilities are given by the slopes Even without the ability to measure this joint weak
of the curves from the plot in Fig. 3 near the origin. probability directly, it is possible to address the issue
The weak probabilities are consistent with the predic- of seeming nonlocality. In the second part of the
tions of +1, +1, and—1 for Pow, Pgw, and Pcw, experiment, we performed two different simultaneous
respectively. For larger displacements in r&il the measurements on the photons using two different
weakness criterion is not satisfied, and the observeddegrees of freedom at the same time. In addition to
shifts eventually approach a strong-measurement limit the transverse beam displacement in &jlwe used
of 1/5 [17]. We point out that this effect has a sim- the waveplate in raiC (see Fig. 1) just before BS4 to
ple classical optical explanation as well, and that the rotate the polarization of the light by a small amount.
strange features of weak measurements all arise fromWe prepared the same initial state as before but use a
interference which, although less intuitive in the mul-  different final state|y r2) = —(1/2)|A) + (1/2)|B) +
tiparticle setting, is precisely analogous to the present (1/+/2)|C). Such a final state swaps the roles of rails
case. A and C so thatPsw = —1 and Pcw = +1. The
We have shown that the weak probability to find reason for doing so was purely technical: Our final
a particle in railA is +1, as is the weak probability —beamsplitters were 580 for vertically-polarized light
to find the particle in railB. This begs the question, but for horizontally-polarized light they had greater
what is the weak probability to find the particle in both  than 90% transmission. We ensured that €gilvhere
arms? It is well known that a single particle cannot the polarization rotation occurs, was transmitted rather
trigger two different spacelike separated detectors; in than reflected, so that the observable polarization shift
fact one might think of that as the defining quality of at the camera would not be negligibly small. We
a particle—it must be either here or there but never rotated the waveplate in rail by a small amount that

Post-selected state displacement
(Units of RMS Width)
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resulted in ak ¢ = 9.6° rotation in the polarization of 12y T ' ' ' ' ]
the lightafter the final beamsplitter when rail$ and 1 - - ]
B were blocked. - I . il ]

We measured the displacementy, of the post- % 0.8 E .
selected state as a function of the rRileoupling g [ + e ]
strengthK 5. The results,Ax/Kp, are the inferred 2 06 ]
probabilities of the photon to be in raB and are  x  ,,[ ae ]

. . . . ] L E

shown in Fig. 4, both in the case of no final po- g i ]
larizer (solid circles, solid line theory) and in the 02Ff .
case of a final polarizer oriented to block vertically- ; % .
polarized light (open circles, long-dashed line theory). 0 N
To generate the theoretical curves, we calculated the

. . . . : 0 0.5 1 1.5 2 25
horizontally- and vertically-polarized amplitudes in Displacement of Rail B (Units of RMS width)

the post-selected state for three Gaussian beams with
the proper phase relationships—one from each rail— Fig. 4. The weak probabilities for the photon to be in rAiland
and extracted the average polarization rotation and therai! C measured in the samgexperimental setup usin'g twg different
average displacement of the intensity distribution with pointers. The weak probability for the photon to be in ilvas

) . measured using a small polarization rotation, and the probability for
and without the polarizer. Note that the weak prob- raj g was measured with a transverse beam displacement. They
ability for rail B is not equal to 1 even in the limit of  are shown as functions of the displacement of @il with the
zero displacement; this is due to imperfect interference polarization rotation kept fixed. The resulting polarization rotations
from the nonweakness of the polarization rotation. and displacements in the post-selected states were converted into

. . weak probabilities by dividing by the relevant interaction strengths.
Recall that all of the beams in the interferometer The resulting weak probabilities for raiBandC are shown as solid

initially had vertically-polarized light. When the polar-  circles (solid line theory) and open triangles (dotted line theory).
izer was inserted to block vertically-polarized light we  For very weak measurements, the entire post-selected state is

measured the beam displacement of only the light that polarization rotated and displaced, by amounts which would imply
had its polarization rotated. i.e on|y photons which that each photon was both in rdil and rail B with certainty. (Note

. . that the theoretical weak probability for rall is always slightly
had traversed rai’. We also show the inferred prOba' below 1; this is due to the nonweakness of the® Jblarization

bility of the photon to be in raiC—given by the polar- rotation.) However, when an additional polarizer is inserted to block
ization rotation of the final state divided I = 9.6° vertically-polarized light in the post-selected state output (such that
(open triangles, dotted line theory). The low data point the only detected photons were polarization-rotated inGaiwe
for the Pz was most Iikely duetoa mode-hop-induced find the remaining photons gre not displaced; the vyeak probability
. . . for the photon to have been in rdilto be zero (open circles, dashed
phase fluctuation, andlthe slight disag reem_em betWeenline theory). Thus, those photons that were definitely inCaiere
the theory and experimental values fB¢ is from definitely not in rail B.
imperfect interference. These data show, that for dis-
placements of railB in the weak regime (less than
0.5 rms widths), the entire distribution of the light is served weak probabilities ef1 for rails A and B and
both displaced and polarization rotated as if the pho- a weak probability of-1 for rail C. We have also stud-
tons really experience both weak measurements. How-ied the transition out of the weak-measurement regime
ever, by blocking all of the vertically-polarized light, for rail C, when the interaction shifts the measurement
we clearly see that the distribution is not shifted at all. pointer by more than about 0.5 rms widths. In addi-
Therefore we can say that once a strong measuremention, we performed two simultaneous measurements
(the polarizer) determines that a particle waginitely on two of the rails using polarization and transverse
in rail C, even the weak value of its probability to be displacement as pointers. For small displacements, we
in rail B vanishes. found that the entire beam was shifted and polarization
We have implemented the quantum box problem in rotated. However, when only the polarization-rotated
a 3-rail interferometer and verified some of the im- light was studied, its transverse displacement was
portant predictions about the weak measurements onezero. This shows the (one-sided) anticorrelation be-
can perform in this system. Specifically, we have ob- tween a strong measurement of the particle in one rail
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and a weak measurement of it in another. This leaves
open the question of what one would observe by mak-
ing joint weak measurementm two different rails.

In another work, we have proposed an experimentally
feasible method for performing such measurements
[20], and an ongoing experiment aims to carry them
out for the 3-box problem. These types of conceptu-
ally simple experiments yield insight into the some-

times shocking behavior of post-selected subensem-

bles in qguantum mechanics, and into the power and
the limitations of weak measurements.
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