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Total Reflection Cannot Occur with a
Negative Delay Time

Kevin J. Resch, Jeff S. Lundeen, and Aephraim M. Steinberg

Abstract—It was recently predicted [1] that the frustrated
Gires–Tournois interferometer exhibits a negative delay time for
reflection. Given its 100% reflectivity, this appears to contradict
causality. We demonstrate that an additional, positive, contribu-
tion comes from consideration of the transverse dimension. We
prove that this contribution is always large enough to enforce a
positive total delay.

Index Terms—Dielectric materials, Fabry–Perot interferome-
ters, Gires–Tournois interferometer, Goos–Hänchen shift, group
delay times, nonhomogenous media, tunneling.

I. INTRODUCTION

NEGATIVE group delays or superluminal velocities have
been predicted and shown experimentally in systems

where particles have a very small transmission probability, and
in the presence of active media. These experiments are not in
conflict with relativity or our ideas of causality, for different
reasons [2]. If the particle has a very small probability of trans-
mission, as in the case of tunneling or frustrated total internal
reflection [3]–[6], then the superluminal propagation can be
understood as a preferential transmission of the leading edge of
the wavepacket. Thus, no energy need ever be transmitted faster
than the speed of light. If the system is an active medium, as in
the case of light propagating in an inverted gas of cesium [7],
[8], then the system can selectively amplify the leading edge of
the pulse and reduce the trailing edge of a wavepacket provided
that the pulse has a smoothly varying envelope. This results
in a time advancement of the smooth pulse, again without any
energy travelling faster than. A sharp disturbance, which
is representative of a true signal, would not exhibit the same
superluminal velocity. In all cases, information travels slower
than , a smooth pulse being reconstructed by Taylor expansion
of the incident pulse [9], [2]. Apparent superluminal propaga-
tion has been reported for a Bessel beam in free space [10], but
proper consideration of the 3-D energy flow in this situation
makes it clear that the experiment can be understood by con-
sidering the (subluminal) diffraction of different components
of the beam. A recent calculation [1] has predicted that the
group delay for a Gaussian beam in a frustrated Gires–Tournois
interferometer can be negative. What makes the Gires–Tournois
interferometer, and total internal reflection, in general, a unique
problem, is that the superluminal behavior is predicted to occur
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Fig. 1. Schematic drawing of the frustrated Gires–Tournois interferometer.
A negative group delay time is predicted for the case wheren > n >
n , and the light is incident in the first region at an angle greater than� =
sin (n =n ). The first and third layers are bulk dielectric materials, and the
middle layer has a thicknessd. The first layer is drawn as a prism to allow the
light to be coupled into it. The dashed line means the third layer is semi-infinite.

for 100% of the incident light, and since the system is made
entirely of dielectrics, it is completely passive. In this work,
we show that a negative delay will not occur once the positive
time contribution from the Goos–Hänchen shift is included.
While it can be shown that the delay time, including the
contribution from the Goos–Hänchen shift, is superluminal in
the more optically dense media, it is still unknown whether the
propagation can be superluminal in the lowest-index material.
In all specific cases we have analyzed, the total propagation
is, in fact, slower than the speed of light in the lowest index
material, suggesting no problem with relativistic causality.

A Gires–Tournois interferometer is essentially a
Fabry–Perot cavity with a 100% back reflector. The Frus-
trated Gires–Tournois interferometer considered in this paper
is made entirely of dielectrics and the 100% reflectivity is
ensured by the process of total internal reflection (TIR),
meaning that the light will always be incident beyond the
critical angle for total internal reflection from the final layer.
The “Gires–Tournois time” ( ) for reflection was calculated
in [1] by following stationary phase theory and differentiating
the reflection phase shift with respect to the incident frequency.
The Gires–Tournois time describes the time delay between
the incident field at the origin reaching its maximum and the
outgoing field at the same point reaching its maximum. Due
to the Goos–Hänchen shift [11], however, the reflected peak
never crosses the origin. Thus, the delay for the 2-D peak of
the pulse to leave the surface may differ from . We show
in this paper that the Goos–Hänchen shift contributes an extra
positive time which is always large enough to make the total
time delay positive.

The frustrated Gires–Tournois interferometer is a simple
three-layer stack of dielectric materials (Fig. 1). The first and
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Fig. 2. Sketch of light undergoing TIR. For TIR,n > n and
� > sin (n =n ). The peak of the outgoing pulse leaves a distance,
�x, along the interface from where the peak of the incident pulse hit. The field
reaches a maximum at the point A at the time calculated by Tournois,t . The
peak of the outgoing pulse leaves point B, due to the Goos–Hänchen shift, at
a timet + (n =c)�x sin � (equal to the time at which the wavefront from
A reaches point C, at velocityc=n ).

third layers are bulk dielectrics with indices and . The
middle layer is a dielectric with index and has a thickness
. The light impinges from the first layer with an angle of

incidence greater than the critical angle, for the first and
third layers (i.e., ). While other combinations
of indices were considered in [1], negative Gires–Tournois
times were predicted to occur only when . Since

, the light is ensured to be incident beyond the critical
angle for the first and second layers as well. Practically, one can
couple the light into, and out of, the interferometer by using a
prism for the first dielectric layer.

II. PHYSICAL ORIGIN OF THE GIRES–TOURNOIS AND THE

GOOS–HÄNCHEN TIMES

Fig. 2 shows a beam undergoing reflection from an inter-
face at an angle of incidence beyond critical. In the diagram,

is the Goos–Hänchen shift and is the phase accu-
mulated during that shift, where is the -component of the
wavevector. The total phase shift, , upon reflection in TIR
can be written as

(1)

(2)

where
angular frequency of the light;
index of refraction of the first medium;
angle of incidence;
speed of light in vacuum;
reflection phase shift for an incident plane wave—the
phase shift in Tournois’s calculation of the delay.

Using stationary phase theory, we can calculate the partial
derivative of the total phase with respect to the angular fre-
quency and set it to zero to calculate the phase time or the
group delay,

(3)

(4)

We can see that the total group delay consists of two compo-
nents. The first term is the time calculated by Tournois in [1],
and is due to the nontrivial phase shift from the multilayer struc-

ture. The second term is an additional contribution not consid-
ered in the original proposal, and is referred to in this work as
the Goos–Hänchen time . The spatial shift arises from the
phase shifts experienced by different plane-wave components
of a bounded beam. We can apply stationary phase theory again
to find the size of this shift from the phase by taking the partial
derivative of the total phase with respect toand setting it to
zero

(5)

(6)

This allows us to write out the Goos–Hänchen time in terms of
the phase factor that has already been calculated as

(7)

(8)

As one can see from Fig. 2, the Goos–Hänchen time is ex-
actly the amount of time it would take a light wavefront to move
a distance . The transverse displacement of the beam
does not affect the delay time for any individual wavefront, but
does modify the time delay for appearance of the spatiotemporal
peak of the pulse. Since interferometric techniques are not sen-
sitive to transverse shifts of the wavefront, such measurements
will yield only the Gires–Tournois time, not the full two-dimen-
sional delay.

III. POSITIVITY OF THE TOTAL 2-D TIME

In the sections to come, we prove that the total reflection
time is greater than zero. We will start by writing the time
delay in terms of the Gires–Tournois time from [1] and the
Goos–Hänchen time for which we derive an expression. We
show that an inequality can be written in a useful form with a
single term on the left-hand side which must be less than the
sum of three terms on the right-hand side. We then analyze
these three terms in turn.

The positivity of the total 2-D time, including the delay con-
tribution due to the Goos–Hänchen shift ( in the frustrated
Gires–Tournois interferometer (Fig. 1), can be expressed as the
inequality

(9)

where is the total delay time.

A. Introduction of the Specific Form of the Gires–Tournois
Time and the Goos–Hänchen Times

We use the following definitions for the complex cosines,
and :

(10)

(11)
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which are proportional to the decay constants of the evanescent
waves set up in the second and the third materials. The angle of
incidence is , and the indices for theth region are written .
To be consistent with the previous calculation [1], we define the
following terms:

(12)

(13)

(14)

(15)

(16)

The terms are the TIR phase shifts at the– inter-
face for and -polarization, respectively. and are useful
substitutions. From [1], we use the expression for the phase of
a reflected wave for angles of incidence,, beyond the critical
angle for the first and third layers

(17)

This expression for the phase is only valid in the range of angles
from , and for the interferometer where

. The group delay for a wavepacket can be calculated
using stationary phase theory. That delay, which we called the

Gires–Tournois time, was also derived in [1] and is given by the
following expression:

(18)

The additional contribution to the reflection time due to the
Goos–Hänchen shift occurs in any two dimensional system
undergoing total internal reflection. This Goos–Hänchen time
delay was described in [12] and is given by the following
expression as in (19) and (20), shown at the bottom of the page.

B. Converting the Inequality in (9) to a Useful Form

The inequality in (9) can be rewritten as

(21)

Upon substitution of (18) and (20), the inequality becomes (22),
as shown at the bottom of the page, and can be converted to a
more desirable form

(23)

(19)

(20)

(22)
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For this step to be true, and must be positive
so as not to change the direction of the inequality. In the range
of angles , is positive, and
is defined in terms of all positive quantities and is, thus,
also positive. To simplify (23) further, we use the fact that

to write the new inequality

(24)

Equation (24) is a sufficient condition to establish the positivity
of . We can make the following definitions:

(25)

(26)

(27)

(28)

which allows us to write (24) as

(29)

C. Proof that is less than

Term is less than term in (29) if the following inequality
is satisfied:

(30)

(31)

Substituting the definition for [(14)] into (31) and taking
the derivative yields

(32)

(33)

This inequality is thus satisfied and termis less than term .

D. Proof of Positivity of Terms and

Term can be written as follows:

(34)

The definitions for and differ for and -polarization;
thus, we will consider each polarization separately. For-polar-
ization, becomes

(35)

(36)

(37)

The numerator of the first fraction is positive in the region of
interest , as is the denominator. The denominator
of the second fraction is positive as . We can
show the numerator of the second fraction is positive by proving
the inequality

(38)

which is equivalent to showing that

(39)

which we rewrite as

(40)

Both of these terms are positive in the region , as
the argument of the inverse tangent is positive. Thus, termis
positive for -polarization. For -polarization, is

(41)
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The numerator for the first fraction is identical to that for-po-
larization and is thus positive. The denominator for the first frac-
tion is also positive as all the components are real in the region
of interest. The denominator of the second fraction is positive,
again because . The final numerator can be
shown to be positive again by considering the argument of the
inverse hyperbolic tangent in the inequality

(42)

(43)

Again, both terms are positive in the region .
Therefore, is also positive for -polarization over the relevant
range of angles. Term from (29) can be proven to be positive
by showing

(44)

We begin by proving the relation for-polarization

(45)

which can be expanded as

(46)

This inequality can be shown to hold by demonstrating that both
the numerator and the denominator are positive. We begin with
the denominator and show

(47)

(48)

(49)

(50)

The left hand side of this relation is a minimum at the critical
angle, where . We substitute this minimum value
into (50) to yield the relation

(51)

(52)

which holds in the system of interest, since . The nu-
merator can be proven positive by showing

(53)

(54)

and

(55)

(56)

(57)

which again holds true. is positive for -polarization.
For -polarization, is positive if

i.e.,

(58)

We again split up the fraction and prove that the numerator and
the denominator are both positive. For the denominator to be
positive, it must satisfy

(59)

(60)

(61)

(62)

which is satisfied in our system. For the numerator to be posi-
tive, it must satisfy

(63)

(64)

(65)

This inequality was already proved in (54). Thus, termsand
of (29) are positive for and -polarizations. This proves the
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inequality in equation (29) and the Goos–Hänchen time is al-
ways positive and greater in magnitude than the Gires–Tournois
time.

IV. CONCLUSION

The time delay due to the Goos–Hänchen shift has been
shown to be positive and greater in absolute magnitude
than the Gires–Tournois time in a specific type of frustrated
Gires–Tournois interferometer.

Unlike the Gires–Tournois time, the Goos–Hänchen time
delay is accompanied by a spatial displacement of the beam.
The effects of the spatial displacement and the Goos–Hänchen
time delay result in a shift of the wavefronts of the reflected
beam perpendicular to the wavevector of that beam relative to
simple Fresnel reflection. Such a shift in the wavefronts does
not produce a time delay measurable using interferometric
techniques. As such, in this system, any interferometer will
only be sensitive to the (negative) Gires–Tournois time delay,
although the physical (2-D) time delay is, in fact, positive.
Experiments are underway at the University of Toronto to
measure the Gires–Tournois time delay using both classical
and quantum [13], [3], [14] interferometric techniques.
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