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Abstract

We measure the joint statistics of photons cre-
ated by parametric down conversion in a type-
II phasematched potassium dihydrogen phosphate
(KDP) crystal pumped by an amplified mode-
locked Titanium:Sapphire laser at 830nm. Two
time multiplexed detectors (TMDs) are used, and
the counting is performed by field programmable
gate array (FPGA) electronics. The photon
statistics of the source are reconstructed and fit-
ted to a general multithermal distribution to de-
termine the state purity.

1 Introduction

1.1 Background

Research in quantum information processing
(QIP) seeks to exploit quantum mechanical ef-
fects for applications such as computing and
communication [1]. Quantum systems have been
shown to have significant advantages over their
classical counterparts, such as more efficient
computational algorithms [2] and theoretically
ideal cryptography [3].

Classical information is stored as bits that
have a defined state of either 1 or 0. To process
these bits, logical operations are carried out on
them by applying electronic gates such as AND
and OR [4]. Quantum information is carried in
the state of quantum bits, or qubits [1]. These
can be treated mathematically as objects that,
under a particular operator, have eigenstates of
|0〉 and |1〉, but generally exist in a superposi-
tion |φ〉 = α |0〉 + β |1〉 (where α, β ∈ C and
|α|2 + |β|2 = 1). Quantum logic gates can be im-
plemented by applying quantum mechanical op-
erators to individual qubits or systems of qubits.

One physical system that can be used as a
qubit is a photon. It has been shown that all the
gates necessary for optical quantum computation
can be constructed by using only optical beam
splitters (e.g. partially silvered mirrors), phase
shifters (e.g. wave plates), single photon sources
and photodetectors [5]. This is known as linear
optics quantum computation (LOQC). A neces-
sary component of LOQC is a beam splitter at

which non-classical interference of two photons
can occur. For error-free computation, the inter-
fering photons must be indistinguishable and in
a pure quantum state [6]. This requires all the
properties of the two photons (such as spatial
mode, time of arrival, frequency and polarisa-
tion) to be well controlled. A major challenge
for quantum computation is the construction of
a source that produces such photons on demand
[7].

There are several methods for producing
pulses of light containing a single photon [8, 9,
10], but parametric down conversion (PDC), fur-
ther explained in §1.2, is the most successful. It
is a simple and reliable process that produces
pairs of photons simultaneously. This is useful
because one photon from the pair can be detected
in order to indicate the presence of the other: a
technique known as heralding. The heralded pho-
ton can then be used in QIP applications [11].

A problem with PDC sources is that the pho-
tons generally exhibit pairwise quantum correla-
tions. LOQC requires pure states, but the oper-
ation of detecting the heralding photon projects
the heralded photon into a mixed state that is
useless for QIP. Recently however, Ian Walms-
ley’s group at the Clarendon Laboratory devel-
oped a photon source that minimises these cor-
relations and achieves a heralded state purity of
over 95% [12, 13], measured using the Hong-Ou-
Mandel (HOMI) interference technique [6].

The photon statistics of the number of pairs
created by PDC depend on the purity of this
state, further explained in §1.2 and §1.3. This
report presents work in measuring the statistics
of the source, and attempts to verify the form of
the pure state.

1.2 Parametric down conversion

The simplest model of PDC considers a pump
photon that enters a nonlinear crystal and de-
cays to two daughter photons [14]. The process
is spontaneous because it is stimulated by ran-
dom quantum fluctuations of the vacuum. How-
ever, the details [15] are beyond the scope of this
report. It suffices to say that PDC is observed
in crystals with a nonlinear χ(2) electric suscep-
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tibility that provides the coupling between the
higher frequency pump photon and the lower fre-
quency daughter photons. The opposite process
is sum frequency generation1, where two photons
of lower frequency couple to one photon of higher
frequency.

‘Parametric’ means that the crystal is left
unchanged by the process. Energy and mo-
mentum are therefore conserved between pump
and daughter photons. In this report, we con-
sider collinear down conversion, where the out-
put fields are created with momenta parallel to
that of the pump field, thus we need only look at
momentum conservation in one dimension, yield-
ing:

ωp = ω1 + ω2, (1)
k(ωp) = k(ω1) + k(ω2), (2)

where the index p corresponds to the pump
photon, and the indices 1 and 2 correspond to
the two daughter photons.

Given that there is a large array PDC emit-
ting sites within a crystal, Equation 2 tells us
that they must oscillate with the correct phase
differences in order that they constructively in-
terfere to produce the output field. Equations
1 and 2 are therefore called the phasematching
equations. Equation 1 is satisfied through con-
servation of energy, whilst Equation 2 is satisfied
using the birefringent properties of a nonlinear
crystal: by cutting and rotating the crystal cor-
rectly, the refractive index n seen by each photon
can be changed. Since k = n(ω)ω

c , this adjusts
the wave vectors accordingly. We will consider
type-II phasematching, shown in Figure 1, with
the pump photon in horizontal polarisation (H)
and the two daughter photons orthogonally po-
larised: one in H, and one in vertical polarisation
(V).

1The χ(2) nonlinear polarisation PNL in a crystal is
related to the applied electric field E by PNL = ε0χ

(2)E2

[16]. An applied electric field comprising two frequencies,
Eω1(t) = E1

2
(eiω1t + c.c.) and Eω2(t) = E2

2
(eiω2t + c.c.)

enters in PNL(t) as (Eω1(t) + Eω2(t))2. This produces a
term (amongst others) in ei(ω1+ω2)t representing an oscil-
lation at the sum of the two applied frequencies. Indeed,
if ω1 = ω2, we see second harmonic generation (SHG).

Pump

pulse

Photon

pair

Nonlinear

crystal

Heralding

detector

Single photon

Polarising

beamsplitter

Figure 1: Schematic of type-II phasematched paramet-
ric down conversion with a heralding setup. Reproduced
from [12].

In general, the phasematching equations have
a broad continuum of solutions. The output
state is thus a sum over all the possible spec-
tral modes in which the equations are satisfied,
and the source is a ‘multimode’ down converter.
Therefore, as mentioned in §1.1, each detection
of a heralding photon projects the system into
a different state2. Since the projection is proba-
bilistic, we obtain a mixed state for the heralded
photon.

The idea behind the source developed in the
Walmsley group is to constrain the solution
of the phasematching equations to one spec-
tral mode by exploiting certain properties of a
potassium dihydrogen phosphate (KDP) crystal.
Thus, when one photon is detected, the other al-
ways collapses into the same state. This removes
any randomness from the ensemble of heralded
photons and produces a pure state. This is the
purity to which we refer in this report.

1.3 Photon number statistics

The laser pump pulse incident on a nonlinear
crystal contains many pump photons. Thus,
when the crystal is prepared properly, any of
these photons may undergo PDC to create a

2Note that the system is not projected into a defi-
nite frequency state because the pump photons have a
broadband spectrum as a result of being in an ultrafast
(∆t ≈ 50fs) laser pulse used to control their timing pre-
cisely. The Fourier transform result for Gaussian pulses
[16] shows ∆ω∆t ≈ π. Thus, these short pulses must have
a broadband spectrum (∆λ ≈ 20nm @ 830nm).
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daughter pair. There is a probability distribu-
tion for the number of generated pairs n known
as the photon statistics. For a general multimode
down converter emitting in s modes with equal
weight, the distribution is multithermal [17] and
given by:

ρ̃m(n, s) =
Γ(n+ s)
n!Γ(s)

(
1 +

n̄

s

)−s (
1 +

s

n̄

)−n
,

(3)

where ρ̃m(n, s) is the probability of generat-
ing n pairs and n̄ is the mean number of pairs
generated.

A pure source (as discussed at the end of §1.2)
emitting in one mode has a thermal (or Bose-
Einstein) distribution [18], given by Equation 3
with s = 1:

ρ̃t(n) =
n̄n

(n̄+ 1)n+1
. (4)

Contrastingly, a completely multimode down
converter is effectively an ensemble of an infi-
nite number of independent pure down conver-
sion emitters. This makes pair generation an en-
tirely random process, hence the photon statis-
tics are in a Poissonian distribution, given by the
limit of Equation 3 as s→∞:

ρ̃p(n) = e−n̄ n̄
n

n!
. (5)

1.4 Previous work

Previously, the joint statistics of various PDC
sources have been measured with, for example,
cryogenically cooled detectors [19] and time mul-
tiplexed detectors [20]. However, these experi-
ments only measured the statistics of up to two
or three pairs of photons. There has also been
some work towards measuring a thermal state
[21], but a verification of the form of a pure PDC
state has yet to be made. This work seeks to
measure the thermal statistics of up to eight pho-
ton pairs.

2 Time multiplexed detection

2.1 Photodetection and the avalanche
photodiode (APD)

There are several instruments available for de-
tecting single photons [22, 23, 24], and most
rely upon an incident photon taking the detect-
ing medium beyond some kind of critical point,
thereby causing a transition in the material that
produces a macroscopic voltage. In an APD, this
transition is between the insulating and conduct-
ing states of a semiconductor junction, which in
our case is made of silicon. The APD has the
advantages of a high quantum efficiency (up to
60%), room temperature operation and a low
dark count rate (signals when there is no inci-
dent photon) [25]. We operate the APDs in the
high gain Geiger mode, in which the junction is
reverse biased to just above breakdown voltage.
One or more incident photons create carriers in
the depletion layer that then cause an ‘avalanche’
of more carriers. The resulting large current that
then flows produces a detectable voltage pulse.
The current is removed quickly after the detec-
tion by a ‘quenching circuit’ [26]. A detection
event signal is commonly referred to as a click.
Both the signal pulse time and the detector dead
time (a time during which photons cannot be de-
tected as the voltage builds back up) are of the
order of tens of nanoseconds. This provides the
additional advantage of high detection rates, so
lasers can be run at high repetition rates and
data can be collected quickly.

One drawback is that the amplitude of the
pulse is independent of the number of incident
photons, and thus they cannot be used directly
as photon number resolving detectors. To over-
come this, a technique known as multiplexing is
employed.

2.2 Multiplexing

Multiplexing involves splitting an incident opti-
cal pulse into more modes than the mean number
of photons in the pulse. Since photons in sepa-
rate modes can be detected separately, the aim is
to have less than one photon per mode on aver-
age, such that a click from a mode indicates the
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presence of roughly one photon in that mode.
The modes can be separated in space (spatial
multiplexing) and detected by different APDs
[27], or separated in time (time multiplexing) to
produce a train of pulses which can be detected
by one APD [28] as long as the pulse separation
is greater than the detector dead time.

The arrangement is usually such that each
photon has a roughly equal probability of end-
ing up in any one of these modes, so as long as
the number of modes available is greater than the
number of incident photons, it is likely that the
number of clicks is representative of the number
of photons in the incident field. The relationship
between the number of clicks and the number of
incident photons is determined statistically, and
discussed in §2.4.

Time multiplexing has the advantage that it
is more readily scalable to detecting higher pho-
ton numbers, which requires splitting the inci-
dent pulse into more modes. In spatial multi-
plexing, adding another mode requires an extra
detector. However, only a single APD is required
to count an arbitrary number of temporal modes.
Much of the following theory of time multiplexed
detection was developed in the Walmsley lab [28]
for the use of the TMDs in this experiment.

2.3 Time multiplexed detector
(TMD) construction

Figure 2 shows how the time multiplexed detec-
tor splits up a pulse. At each of the first two
beam splitters, a photon can be coupled into ei-
ther the long or short fibre. The fibre loops are
of approximate length L and the short fibres can
be considered of negligible length. Table 1 lists
the possible delays that can be introduced.

2.4 Convolution

The probabilistic nature of photon propagation
in the fibre arrangement necessarily means that
even with a lossless TMD, the click statistics (the
probability distribution of the number of clicks)
are not those of the photon statistics of the input
state (the state before the TMD). There are cal-
culable probabilities for the number of clicks k in

Figure 2: Schematic of a TMD. In a perfect efficiency
model, the fibre loops and beam splitters (BS) in this
two-stage TMD place the input state from the left into
a superposition of eight states. On detection, an inci-
dent photon can be found in either of the two spatial
modes, one for each avalanche photodiode (APD), and
in one of four temporal modes, making a total of eight
possible modes.

Stage 1 Stage 2 Time
Short Short 0
Long Short t
Short Long 2t
Long Long 3t

Table 1: The time delay of a photon taking four different
paths in the TMD as a result of the choice between a long
and short fibre at each of the two beam splitters, BS 1
and BS 2. The time t = L/c is the delay introduced by
one fibre loop of length L.

the detector given a certain number of incident
photons n. For example, two photons incident on
the detector can either end up in different modes
(giving two clicks) or the same mode (giving one
click). In general, all that is required to detect
k clicks is that the number of incident photons
n ≥ k. Thus, the probability pk of detecting k
clicks is a sum over the probabilities C(k|n) of n
photons ending up in k modes:

pk =
∑

n

C(k|n)ρ̃n, (6)

where ρ̃n is the probability that n photons are
incident on the TMD.

We can now construct a convolution matrix C,
with elements Ckn = C(k|n), that relates a vec-
tor ρ̃ containing the photon statistics to a vector
p containing the click statistics:

p = C · ρ̃. (7)

Figure 3 gives a visualisation of the convolu-
tion matrix. It shows how a high incident photon
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number means that a large convolution matrix is
required to estimate the input photon statistics.
However, in this experiment, the average photon
numbers after loss (to be discussed in §2.5) are
low and so a 9× 9 truncated convolution matrix
is sufficient. The details of the calculation of C
are given in Appendix A.

n

k

 

 

0 4 8 12 16 20
0

2

4

6

8

0

0.5

1

Figure 3: The probabilities Ckn of detecting k clicks when
n photons are incident on a lossless TMD with 8 equally
weighted modes. At low n, k is likely to equal n. When
n� 8, the detector begins to saturate - it becomes more
likely that all 8 modes will be filled, and thus 8 clicks will
be detected. Notice that Ckn = 0 for k > n since it is
impossible to see more clicks than there are incident pho-
tons. The problem is analogous to randomly distributing
n balls among 8 bins and finding the probability that k
bins are occupied.

2.5 Loss

Photons are lost from the incident beam through
many processes including: imperfect coupling of
beams to fibres and fibres to each other, detector
quantum efficiencies less than unity and scatter-
ing from optical components in the beam path.
The analysis of loss can be simplified by noting
that its effect is solely to remove photons ran-
domly. It can therefore be modelled as a single
beam splitter placed before the input to a loss-
less TMD. The beam splitter reflects photons out
of the system at random. The probability that a
photon gets removed is called the loss parameter,
l, and is equivalent to the reflection coefficient of
the beam splitter. The efficiency of the system,
η = 1− l, is equivalent to the transmission coef-
ficient.

The parameter l generates a set of probabili-
ties Ln′n relating n photons incident on the beam
splitter to n′ photons being transmitted. In a
similar way to the convolution matrix of §2.4, we
can use these probabilities to construct the loss

matrix L which acts on the input state ρ̃ to gen-
erate a reduced distribution of photon statistics
ρ̃′ = L · ρ̃. This represents the photons incident
upon the lossless TMD. Equation 7 is thus mod-
ified to:

p = C · ρ̃′

p = C · L · ρ̃. (8)

The details of the calculation of the loss matrix
are given in Appendix B.

3 Experimental details

3.1 Setup

Figure 4 shows the laser set up. As explained
in §1.2, the KDP crystal produces two orthogo-
nally polarised down conversion photons. After
the strong blue pump light is removed, these two
photons can be separated by a polarising beam
splitter that transmits H (detected by TMD 1)
and reflects V (detected by TMD 2). This setup
allows simultaneous counting of the number of
photons in H and the number in V on each pulse.

The APDs had dead times of ∼ 60ns, so the
temporal separation of TMD modes was made
to be ∼ 100ns by making the fibre loops the rel-
evant lengths. The precise timings of modes in
each TMD are given in Appendix D. The latest
temporal mode from a TMD is ∼ 0.4µs after the
laser pulse. This was noted to be well within the
laser pulse separation of 4µs at 250kHz repetition
rate, thus the laser pulses do not interfere with
each other. However, this also means that for
the majority of the time (between laser pulses)
we do not want the electronics to count. Select-
ing the time window during which we expect a
laser pulse, and hence want to count photons, is
called time gating.

The photodiode PD produces a signal when
there is a laser pulse, providing a trigger for the
FPGA. We programmed the FPGA to use this
trigger, along with the known TMD mode tim-
ings, to calculate when to expect photons. It gen-
erates a train of eight narrow time gating pulses,
one for each of the four time windows for each
TMD. On photon detection, the APDs produce
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Figure 4: The experimental setup for taking joint pho-
ton number statistics. The Titanium:Sapphire (Ti:Sapph)
830nm modelocked laser produces 80MHz pulses of dura-
tion ∼ 50fs. These are coupled into a regenerative optical
amplifier (Amp) that produces greater intensity pulses at
a rate of ∼ 250kHz. The beam passes through a half
wave plate (HWP) into the second harmonic generation
(SHG) setup, where it is focused into a beta-barium bo-
rate (BBO) crystal. The emerging beam comprises the
remaining fundamental red, some of which is collected by
a photodiode (PD), and 415nm blue from SHG, which is
reflected by dichroic mirrors (DM) and passed through a
blue filter (BF) before being focused into the KDP crystal
for PDC. The remaining blue pump beam is removed by
more dichroic mirrors and a red filter (RF). The orthog-
onally polarised red photon pairs pass through another
HWP before being separated by a polarising beam split-
ter (PBS). Each of the split beams is coupled into a sin-
gle mode fibre (SMF) which goes to a TMD. The TMD
signals and PD trigger signal are all connected to field
programmable gate array (FPGA) electronics by coaxial
cable (Coax), and the FPGA data is sent to a personal
computer (PC) via universal serial bus (USB) cable.

pulses which are ∼ 25ns long. If the rising edge
of an APD pulse is coincident with the relevant
time gating pulse in the FPGA, then that APD
click will be counted. Any APD pulses which oc-
cur outside the time gating windows (e.g. from
background photons or after pulsing3) are not
counted. The time gating windows in this ex-
periment were 4ns long.

The amplifier is used for for two reasons.
Firstly, it is used to reduce the 80MHz repeti-

3Sometimes APDs produce a a second signal shortly
after a detection event. This is caused by the release of
charge caught in the depletion layer, and is known as ‘after
pulsing’.

tion rate of the Ti:Sapph laser, which is much too
high for the TMD. A TMD receiving pulses every
10ns would mean more than one pulse would be
in the detector at any one time, and they would
interfere. Secondly, an amplified pump pulse
with greater intensity increases the average pho-
ton number of the down conversion, making the
distributions given by Equations 3, 4 and 5 more
distinguishable. This allows us to reduce the er-
ror when fitting the reconstructed photon statis-
tics to a multithermal state, and thus reduce the
error on measuring the number of modes s.

Another degree of freedom for the photons not
yet discussed is that of their transverse spatial
profile in the laser beam, known as the transverse
mode [16]. The down conversion beams from
PDC may comprise several transverse modes, so
to further restrict our photons to a single mode,
we couple these beams into single mode fibre
(SMF) before they go to the TMDs. SMF can
carry only one transverse mode: the lowest Gaus-
sian mode, known as TEM00.

3.2 Data acquisition

The data was taken using Altera Cyclone FPGA
electronics in communication with Labview 8.0
‘Virtual Instrument’ (VI) software on a PC. Each
standard run was 40s long, which at a laser rep-
etition rate of 250kHz allowed counting over ap-
proximately 107 pulses to reduce random error
on the click statistics. Whilst the laser is active,
a run is started from the VI, which starts the
FPGA creating a 2-D histogram, with the num-
ber of clicks in each PDC beam on each axis. At
the end of the run, the FPGA uploads the his-
togram to the VI. The laser power was adjusted
by using a rotatable half wave plate and polar-
ising beam splitter after the laser aperture (not
shown).

4 State reconstruction

4.1 Theory

4.1.1 Joint statistics

Joint statistics give the probability of finding m
photons in one beam at the same time as find-
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ing n in the other. In a joint statistics measure-
ment, the photon statistics and click statistics
are now represented by the matrices ρ and P
respectively. The elements of ρ are the proba-
bilities ρmn, where m is the number of photons
generated in one beam and n is the number of
photons generated in the other. For a down con-
version source producing pairs of photons in H
and V polarisations, we would expect to find
ρmn 6= 0 only for m = n, i.e. a diagonal ma-
trix. The elements of P are the corresponding
probabilities Pkl of detecting k clicks in TMD 1
and l clicks in TMD 2, and are given by

Pkl =
∑
m,q

∑
n,r

CkqLqmρmnLnrCrl. (9)

We can write this as a matrix equation
analagous Equation 8:

P = C1 · L1 · ρ · LT
2 ·CT

2 , (10)

where Ci and Li are the convolution and loss
matrices for the ith TMD. These matrices make
up the detectors’ characteristic transformation of
the input state to the click statistics.

4.1.2 Convolution matrices

The Ci matrices can be calculated using the
mode weightings - the probabilities that an in-
cident photon appears in each of the modes of a
TMD. This is done using a pulsed light source
with a very high photon number (n̄ � 8) such
that the TMD is saturated, and all 8 modes con-
tain many photons. Using a fast photodiode, we
can measure the intensity of light in each mode,
which is proportional to the probability of a pho-
ton appearing in that mode. The mode weight-
ings for our TMDs are given in Appendix A.

4.1.3 Loss matrices

The Li matrices can be calculated if we find the
loss parameter li for each TMD. We developed
a generalisation of the Klyshko method [29] that
exploits the experimental data itself.

It is difficult to determine the efficiency of
a low photon number photodetector because it
needs to be tested with a weak source. We should

ideally like to send in a definite number of pho-
tons and see how many of them are detected.
However, it is the nature of current weak sources
to produce various numbers of photons with cer-
tain probabilities upon each pump pulse. This is
a problem because, for example, when the source
produces zero photons on a particular pulse, this
is indistinguishable from one photon being pro-
duced, but being ‘missed’ by the photodetector.

Klyshko’s scheme uses a two-photon light
source to calibrate a photodetector PD1. For
clarity of explanation, assume that upon a pump
pulse this source produces either no pairs or a
single pair of photons, but we do not know with
what probabilities. One photon from the pair
is sent to PD1 and the other is sent to a sec-
ond photodetector PD2. All real photodetectors
have quantum efficiencies less than unity, so for
each pulse there are four unique outcomes: ei-
ther both PDs click, only PD1 clicks, only PD2
clicks, or neither PD clicks. Now consider solely
the subset of events in which we see a click in
PD2. In this subset, we know that the source
definitely produced one photon pair. Thus, there
are now two unique events: a click in PD1 or
no click in PD1. By counting over many pulses,
the ratio of the number of each these two events
tends to a measure of the efficiency of PD1, which
can be called the Klyshko efficiency. Similarly,
by using the subset of events in which we see a
click at PD1, the efficiency of PD2 may also be
calculated. Such a scheme has been tested ex-
perimentally using parametric down conversion
[30].

The generalised method extends this for detec-
tors that can resolve photon number, like TMDs.
As before, the joint photon statistics are assumed
to be diagonal (i.e. the source produces pairs),
but the corresponding set of probabilities, ρnn,
are left free.

We use an iterative optimisation to test the pa-
rameter space defined by the loss parameters of
each TMD, l1 and l2 (where 0 ≤ li ≤ 1). For each
tested point in parameter space (l1, l2), a least
squares method (with the constraints ρnn ≥ 0)
is used to find a best fit for ρ. This inevitably
leaves a residual matrix that is the difference
between the left hand side and right and side
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of Equation 10, representing the difference be-
tween the measured click statistics and the click
statistics generated from the best fit. The mag-
nitude of this residual is characterised by cal-
culating its Frobineus norm4. The point (l1,
l2) whose residual has the minimum Frobineus
norm is then taken to be the best estimate of the
losses. Since the problem appears to be convex5,
we move around the parameter space using New-
ton’s method [31]. A matlab R© program incor-
porating the ‘lsqnonneg’ function was written for
determining the loss parameters. Further details
are given in Appendix B.

We would expect that the loss parameters of
the detectors are independent of the average inci-
dent photon number. So by using joint statistics
data sets from different pump powers and per-
forming this optimisation for each one, we can
obtain a measurement of the loss parameters of
the TMDs, and hence construct their respective
loss matrices Li.

4.2 Reconstruction in practice

4.2.1 Optimisation of the state

Having calculated Ci and Li, it would appear
that to find ρ, one need only invert Equation 10:

ρ = L−1
1 ·C

−1
1 ·P · (C

T
2 )−1 · (LT

2 )−1. (11)

However, an inversion of Equation 10 is dif-
ficult because with typical loss parameters, the
loss matrices are almost singular (see Appendix
B, Table 6). Consequently, their inverses blow
up, which can result in unphysical photon statis-
tics i.e. negative probabilities or probabilities
that sum to greater than unity [32]. To avoid
this problem, we use a least squares method to
optimise ρ within the physical constraints that
its elements satisfy 0 ≤ ρmn ≤ 1. A matlab R©
program incorporating the ‘lsqlin’ function was
written for this purpose.

4The Frobineus norm of a matrix is the square root of
the sum of the squares of all its elements: Norm(A) =√

AAT.
5Optimisation problems seek to minimise a function

f(x1, x2, ..., xn). In this case, f(l1, l2) is the magnitude of
the residual of the least squares fit. A convex optimisation
problem is one in which f has only one local minimum,
which is thus the global minimum.

4.2.2 Background noise

Any photons that reach the detector and are not
from the PDC source are considered to be back-
ground. Possible background sources are dark
counts in the APDs, and photons from ambient
light sources entering the TMD fibres. However,
these are suppressed to some extent by time gat-
ing (see §3.1). Background that is not suppressed
by time gating is that which arrives as a conse-
quence of the laser pulse itself. There are some
residual pump pulse photons that pass through
the filters, and red photons from glass compo-
nents that fluoresce slightly when subjected to
strong blue light.

Just as loss processes randomly remove pho-
tons from a detector, similarly background noise
randomly adds photons. Consider the case when
one pair of photons is generated (ideal input
state element ρ11), and they go to TMD 1 and
TMD 2 respectively. Ideally, this would appear
in the click statistics as a diagonal P11 event. If
a background photon is also detected at TMD
1, this changes the click event to P21. Notice
though that it is also possible to get a P21 event
from two pair generation ρ22 followed by a loss
of one photon in TMD 2.

This illustrates the general case that back-
ground in one detector very hard to distinguish
from loss in the other. In a Klyshko loss calcula-
tion, when there is significant background in one
detector, this will produce a higher loss parame-
ter for the other detector. We see in §5 that this
has consequences for our results. Dealing with
background is discussed further in Appendix C.

5 Results

5.1 Clicks

Figure 5 shows two examples of click histogram
data. The mean detected photon number is
much less than the number of modes in the TMD,
and thus the detector was far from saturation.
Indeed, the highest order significant events were
those involving three clicks being detected in ei-
ther TMD. The analysis is therefore not affected
by the truncation of the convolution matrices to
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9×9. Study of Figure 3 and its row k = 3 shows
that there is little need to consider convolutions
of pairs above about n = 8 since the probability
of a higher order pair contributing to three clicks
in the TMD is very low.

The P00 element is by far the largest in click
data at all powers. This reflects primarily the low
detector efficiency, but also the rarity of down
conversion events: on most pulses, no photons
reach the APDs. A diagonal element Pnn is al-
ways much smaller than the corresponding Pij

elements where either i = n and j < n, or j = n
and i < n. This too is due to low detector effi-
ciency, but also to background photons.

0 1 2 3 4 5 6 7 8

012345678

0

5

HV
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g 10

(N
+

1)

(a) 1mW, n̄ = 0.003

0 1 2 3 4 5 6 7 8

012345678

0

5

HV

lo
g 10

(N
+

1)

(b) 65mW, n̄ = 0.124

Figure 5: Examples of the click histograms from the
FPGA. Nmn is the number of events where there were
m clicks in H (TMD 1) and n clicks in V (TMD 2).
The total number of events (i.e. laser pump pulses) was∑

m,n Nmn = 10 267 277. n̄ is the mean detected photon
number.

Since such a large part of the form of the data
is the random removal of photons from the down
conversion beams due to low detector efficiency,
the click statistics at a first glance look like those

of a random Poissonian source. However, we seek
a state buried within these statistics that is di-
agonal and non-Poissonian. This means that a
precise determination of the efficiencies is criti-
cal in order to compensate for them, and this is
attempted in §5.2.

5.2 Efficiency determination

Figure 6 shows the result of the efficiency deter-
mination using the generalised Klyshko method
described in §4.1.3.
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Figure 6: The efficiencies of the TMDs calculated with
a generalised Klyshko method, as a function of the blue
pump power to the KDP crystal. See text for details.

We would expect the efficiency of a TMD to
be independent of the number of incident pho-
tons, and thus constant for different blue powers.
However, the data points do not show this. The
Klyshko efficiencies increase with power from
zero, up to a small discontinuity indicated by
Line A. There is an approximate plateau between
45mW and 100mW, and then there is an appar-
ent discontinuity (indicated by Line B) to powers
of 110mW and above, which give a significantly
higher efficiency.

At lower powers, one explanation could be
that random background (from ambient light
and scattering in the system) was more signif-
icant and had the effect of adding to off-diagonal
elements in the state (see §4.2.2), which looks like
a higher loss and hence a lower efficiency. The
discontinuity at 30mW could be due to the digi-
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tal power meter used to measure the blue beam
power: this is the power at which a change of
scale must be made.

An explanation of the behaviour at high pow-
ers could be that above ∼ 90mW, the BBO crys-
tal was observed to exhibit other nonlinear ef-
fects: visible red and yellow light was emitted,
possibly as a result of the high peak intensity of
the pulses thermally damaging the crystal. An
increase in the red power leaving the BBO could
have meant that more red photons were trans-
mitted through the blue filtering, since the filters
are not perfect, and red background was reaching
the TMDs. Furthermore, this background would
have been synchronised with the laser pulses, so
would not be suppressed by the time gating. Al-
ternatively, the form of the blue beam mode from
the BBO could have been so different that the
down conversion light was more efficiently cou-
pled into the single mode fibres, and so the de-
tector efficiency was actually higher.

Considering the apparently anomalous be-
haviours at low and high power, for the purpose
of a state reconstruction, the most reliable effi-
ciency values were taken to be between 45mW
and 90mW. These were averaged to obtain:

η1 = 0.102(2) ⇒ l1 = 0.898(2),
η2 = 0.083(2) ⇒ l2 = 0.917(2).

5.3 Reconstruction

Along with the convolution matrices calculated
from the mode weightings of §4.1.2, the TMD ef-
ficiencies calculated in §5.2 were used to perform
a reconstruction of the detector input states at
each blue pump power, as described in §4.2.1. A
selection of the reconstructed states is shown in
Figure 7.

The physicality of the states was checked by
ensuring that the sum of the probabilities, S, for
each state is unity (since this was not an optimi-
sation constraint), where

S =
∑
mn

ρmn. (12)

For our states, the mean of the respective S
values S̄ = 1.0002± 0.0004.
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Figure 7: The reconstructed input states for various pow-
ers of blue laser. Each bar shows the probability of the
corresponding number of photons in each PDC beam from
the KDP crystal. If the reconstructed state was purely
that of PDC, we would expect non-zero values on only the
diagonal elements of the state. However, background pho-
tons and error on the TMD efficiencies mean that there
are some off-diagonal elements.

The reconstructions produced approximately
diagonal states. We can use the following as a
measure of how diagonal a state is:

D =
Tr(ρ)
S

, (13)

where D = 1 for an entirely diagonal state,
and D = 0 for a state with no diagonal elements.
For our reconstructed states, D̄ = 0.87± 0.08.
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5.4 Multithermal fit

Recall the photon number distributions of §1.3.
If the state is pure, we would expect that a recon-
struction fitted to a diagonal multithermal dis-
tribution (with the mean photon number n̄ and
number of modes s as free parameters) would
yield the same n̄ as the reconstruction, and show
s = 1. Again, a matlab R© program was written
to perform this fit.
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Figure 8: The mean photon number produced by the state
reconstruction, and by a fit to a multithermal distribution.
Line A shows a linear increase of n̄ with power if the
gradient at low powers was continued. Subsequent means
lie below this line, indicating that the mean is increasing
less than linearly with power. See text for details.

Figure 8 shows n̄ for the reconstructed state
and the multithermal fit. The multithermal fit
follows the reconstruction very closely. This is
what we would expect since the mean photon
number in the click statistics is related to the
mean number of input state photons solely by
the loss parameters, which we have fixed. A good
reconstruction must conserve probability, which
will show in the correct reconstructed mean pho-
ton number.

The theory of PDC [33] shows that we expect
n̄ ∝ sinh gP , where P is the pump power and
g is a constant. This constant is not known for
our down converter, thus we do not know the
regime of the sinh function we are in. The most
we can do is assess whether n̄ is increasing at
least linearly (as it would if gP was small). Line
A illustrates that the mean photon number is in-
creasing less than linearly if we consider the con-

tinuous regime of 0− 100mW. One explanation
could be that an increase in blue power from the
BBO may not be causing a proportional increase
in the power coupled into the crystal due to a re-
duction of the beam quality. Alternatively, the
effects of background in the click statistics and
unreliable Klyshko efficiencies may simply be dis-
torting the mean photon number too much.

The apparent discontinuity in mean photon
number above 100mW corresponds to the dis-
continuity in the Klyshko efficiencies. It is likely
that this increase appeared because the mean ef-
ficiencies used to reconstruct all the states were
much lower than the calculated Klyshko efficien-
cies for powers > 100mW, as discussed in §5.2.
If a reconstruction is performed assuming an ef-
ficiency lower than that of the system, it over-
estimates the loss of photons, thus producing an
artificially high original mean photon number.
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Figure 9: The number of modes in which the down con-
verter emitted, as produced by the multithermal fit. See
text for discussion.

Figure 9 shows the s values generated for each
multithermal fit. An increase in power should
not change the number of modes into which the
down converter emits [33]. If we look for a mean
value of s, however, we get s̄ = 6 ± 4, which is
clearly a very large error. This indicates that the
reconstructions were not precise enough to pro-
vide resolution of the s parameter in a multither-
mal distribution. The effect on the distribution
from a change in s is very small, thus significant
error in the reconstructed state (due to errors on
loss parameters and background) has meant that
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a reliable measurement of s is not possible. Al-
ternatively, it may be that the assumption of a
multithermal fit is questionable. The weighting
of the modes into which a down converter emits is
determined by the spectrum of solutions to the
phasematching equations (Equations 1 and 2).
This spectrum does not in general assign equal
weights to each mode, whereas a multithermal
distribution does. However, more sensitive pa-
rameters such as mode weightings are likely to
be undetectable with such a large error in s.

6 Conclusion

The convex nature of the loss parameter optimi-
sation problem, together with a reasonably large
subrange of pump powers yielding almost con-
stant efficiencies, is good evidence that the ef-
ficiency of a photon number resolving detector
can be found using a parametric down conver-
sion source and a generalisation of the Klyshko
method. It has also been shown that using these
efficiencies for the TMDs in this experiment,
joint photon statistics close to those of a PDC
source can be reconstructed from the click statis-
tics data, yielding physical states that are almost
diagonal.

However, errors on the efficiency calculation
and the reconstruction were too high to find a
precise form for the photon statistics. Conse-
quently, the fitting of a multithermal distribution
was not reliable enough to determine the purity
or otherwise of the source.

For the success of future experiments, it is
firstly essential that the purity of the source is
established with a HOMI interference dip (see
§1.1) prior to a data run in order that s is as close
to unity as possible. Ideally, the purity should
be verified across the power range. An assump-
tion of this work was that the form of the pump
beam remained the same at all powers, however
the observation of a change in colour of the SHG
light at higher powers has made this assumption
questionable. This suggests that the form of the
pump beam modes at different powers should be
investigated.

Secondly, ambient background light should be

reduced as much as possible by lowering the in-
tensity of laboratory lighting to the minimum
level and shielding the TMDs from scattered
laser light. The main cause of the errors in the
analysis is likely to be a lack of compensation
for background photons, which led to the ap-
parently variable efficiency and errors in the re-
construction. In order to measure background
that is synchronised with the laser pulse, at
each blue power the background photon distri-
bution should be measured by stopping the down
conversion, but allowing the beam to propagate
through the system as it otherwise would. This
could be achieved by rotating the polarisation of
KDP pump beam such that it is no longer phase-
matched in the crystal. A second set of click
statistics would then be formed for the back-
ground. We have developed a theoretical frame-
work for accommodating this background data,
which is given in Appendix C.
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Appendices

A Convolution matrices

Outline

We want to know the number of modes k that will be occupied given n photons incident on the TMD.
Therefore, we require the elements Ckn of the convolution matrix.

The calculation of a convolution matrix is most easily illustrated by example. Consider a TMD
which has four possible output modes labeled i = {1, 2, 3, 4}. Let the probability that a photon ends
up in the ith mode be λi, and the set of λi be known as the mode weighting. Consider the case where
eight photons are incident on the detector. The question is: what are the probabilities for {1,2,3,4} of
the four modes being occupied? For example, the simplest case is that of a single mode being occupied
by all the photons. Since there are four modes, the probability is simply the sum of the probabilities
of all eight photons appearing in each mode:

C18 = λ8
1 + λ8

2 + λ8
3 + λ8

4. (14)

We can consider Equation 15, which uses the fact that the probability of a photon appearing in any
mode must be equal to unity:

λ1 + λ2 + λ3 + λ4 = 1
⇒ (λ1 + λ2 + λ3 + λ4)8 = 1. (15)

By the multinomial theorem6, the left-hand side of Equation 15 can be expanded [34, 35] as:∑
k1,k2,k3,k4

8!
k1!k2!k3!k4!

λk1
1 λ

k2
2 λ

k3
3 λ

k4
4 . (16)

This gives terms in various powers of λ, which are displayed in Table 2. So, for example, to calculate the
probability of three modes being occupied given eight incident photons, we sum the five corresponding
terms in the relevant powers of λ:

C38 = p(3|8) =
4∑

i 6=j 6=k

(
8!

6!1!1!
λ6

iλjλk

{
1
2!

}
+

8!
5!2!1!

λ5
iλ

2
jλk +

8!
4!3!1!

λ4
iλ

3
jλk . . .

. . .+
8!

4!2!2!
λ4

iλ
2
jλ

2
k

{
1
2!

}
+

8!
3!3!2!

λ3
iλ

3
jλ

2
k

{
1
2!

})
, (17)

where the factors { 1
q!} are to prevent multiple counting where there are q values of λ raised to the same

power. For example, under the summation, the product λ2
jλ

2
k produces two terms with λ2

1λ
2
2 and λ2

2λ
2
1,

which are identical. Thus, given the set of λi for a TMD, all Ckn values can be calculated.
6The multinomial theorem is an extension of the binomial theorem:

(x1 + x2 + ..+ xm)n =
∑

k1,k2,..,km

n!

k1!k2!..km!
xk1

1 xk2
2 ..xkm

m ,

where the sum is taken over all integer sequences of k1 to km, and
∑m

i ki = n.
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Term In Modes
Occupied

λ8
i 1

λ7
iλj 2

λ6
iλ

2
j

λ5
iλ

3
j

λ4
iλ

4
j

λ6
iλjλk 3

λ5
iλ

2
jλk

λ4
iλ

3
jλk

λ4
iλ

2
jλ

2
k

λ3
iλ

3
jλ

2
k

λ5
iλjλkλl 4

λ4
iλ

2
jλkλl

λ3
iλ

2
jλ

2
kλl

λ2
iλ

2
jλ

2
kλ

2
l

Table 2: The various powers of λ in which terms from the multinomial expansion of Equation 15 appear. The corresponding
terms represent the probabilities of a certain number of modes in the TMD being occupied.

Calculation

The mode weightings for each TMD are shown in Table 3, along with their respective 9×9 convolution
matrices in Table 4 and Table 5.
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TMD 1 TMD 2
0.1278 0.1482
0.1238 0.1350
0.1201 0.1023
0.1086 0.1132
0.1324 0.1612
0.1281 0.1250
0.1338 0.1128
0.1255 0.1021

Table 3: The mode weightings for each TMD. Note that they do not sum to unity due to rounding errors.



1 0 0 0 0 0 0 0 0
0 1 0.128 0.017 0.002 0.000 0.000 0.000 0.000
0 0 0.872 0.334 0.101 0.028 0.008 0.002 0.000
0 0 0 0.649 0.496 0.265 0.123 0.054 0.020
0 0 0 0 0.401 0.509 0.422 0.291 0.182
0 0 0 0 0 0.198 0.375 0.443 0.423
0 0 0 0 0 0 0.073 0.192 0.308
0 0 0 0 0 0 0 0.018 0.063
0 0 0 0 0 0 0 0 0.002


Table 4: A convolution matrix for TMD 1.



1 0 0 0 0 0 0 0 0
0 1 0.125 0.016 0.002 0.000 0.000 0.000 0.000
0 0 0.875 0.329 0.096 0.026 0.007 0.002 0.000
0 0 0 0.655 0.493 0.258 0.116 0.049 0.020
0 0 0 0 0.409 0.512 0.417 0.282 0.172
0 0 0 0 0 0.204 0.383 0.448 0.421
0 0 0 0 0 0 0.076 0.201 0.318
0 0 0 0 0 0 0 0.019 0.067
0 0 0 0 0 0 0 0 0.002


Table 5: A convolution matrix for TMD 2.
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B Loss in a TMD

Loss matrices

Given the loss parameter l for a TMD, the probabilities p(n′|n) of n′ photons being transmitted to an
ideal TMD given n incident photons can be computed, forming the elements Ln′n of a matrix L. The
problem is one of n trials with the same probability l each time, thus the distribution is binomial:

Ln′n =
(

n
n′

)
ln−n′

(1− l)n′
. (18)

The 9× 9 matrix generated when l = 0.9 is shown in Table 6.

1 0.900 0.810 0.729 0.656 0.591 0.531 0.478 0.431
0 0.100 0.180 0.243 0.292 0.328 0.354 0.372 0.383
0 0 0.001 0.027 0.049 0.073 0.098 0.124 0.149
0 0 0 0.001 0.004 0.008 0.015 0.023 0.033
0 0 0 0 0.000 0.000 0.001 0.003 0.005
0 0 0 0 0 0.000 0.000 0.000 0.000
0 0 0 0 0 0 0.000 0.000 0.000
0 0 0 0 0 0 0 0.000 0.000
0 0 0 0 0 0 0 0 0.000


Table 6: A loss matrix with l = 0.9. Note that Ln′n = 0 for n′ > n since it is impossible for loss processes to add photons
to the field.

Optimisations in the Klyshko method

Many readily available optimisation algorithms (for instance, in matlab R©) take a problem in the affine
form y = Mx, where the vector y and the matrix M are known, and the vector x is to be found such
that the residual norm, |r| = |y−Mx| is minimised. In the loss optimisation problem, it is possible to
reduce Equation 10 to such a form, however y alone is known (representing the click statistics), along
with only assumed forms for M(l1, l2) (representing the convolution matrices and loss matrices) and x
(representing the photon statistics).

The problem is thus one optimisation problem within another. There are many possibilities for
M(l1, l2), each of which produces a certain |r| when optimising x. The matlab R© function ‘lsqnonneg’
was used to find |r| for a given M(l1, l2). However, in order to find the best M(l1, l2), another optimi-
sation routine was developed. For a simulation of click statistics for a thermal distribution with n̄ = 1
and (l1, l2) = (0.55, 0.45), Figure 10 shows |r| for various M(l1, l2).

Similar graphs are obtained for simulations with higher loss parameters, and with measured click
statistics (although the form is less pronounced).

We can consider the residual norm to be a function, f(l1, l2) = |r|, of the loss parameters. In order to
find the minimum of this function, we can employ Newton’s method. This provides a way of iteratively
moving towards a stationary point of a function. For clarity, we consider a function of one variable,
f(x). For finding a minimum, the method uses an initial guess x0 and then iterates with

xn+1 = xn −
f ′(xn)
f ′′(xn)

. (19)

where xn+1 is closer to the minimum. This method relies on the function being twice differentiable,
and uses these derivatives at xn to calculate how to move toward xn+1. Thus, if we seek the minimum
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Figure 10: The value of the residual norm, |r|, is an indication of the closeness of the fit to the measured statistics. The
minimum residual norm is the point where l1 and l2 are optimal. The single minimum point of this function demonstrates
that the problem is convex.

of the entire function (the global minimum), the derivatives must guide the iteration toward that
minimum. If the function has multiple minima, Newton’s method may find a local minimum which is
not the global minimum, in which case some prior knowledge of the function must be used in order to
choose x0 sufficiently close to the global minimum.

For our optimisation problem, Figure 10 shows us that the f(l1, l2) is indeed twice differentiable
(being very smooth), and does not have multiple minima: its single minimum means that the problem
is convex, and so the solution found by Newton’s method should not depend on the choice of x0.

In a multidimensional problem with f(x1, x2, ..., xm), Equation 19 becomes vectorised:

xn+1 = xn − γ[H(f(xn))]−1∇f(xn). (20)

where xi is the vector position in parameter space, H is the Hessian matrix of second derivatives
and γ is a parameter which can be used to optimise the step length between iterations. The straight
implementation of Newton’s method as performed in this work was very crude, and required much
adjusting of iteration parameters in order to find a solution. However, there are refinements which
would improve an algorithm that incorporates them [31].
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C Background in a TMD

Combining probability distributions: more convolution

Consider the input state ρ̃ to a single TMD. This vector represents the discrete statistics of the
photons incident on the TMD. We know some of these photons are from the source photon statistics
with distribution a, and that there are extra photons from a background distribution b. We should
like to know how a and b combine to give ρ̃ so that finding ρ̃ and b would allow us to retrieve a.

For two discrete random variables X,Y ≥ 0 with probability distributions f(X) and g(Y ), the
probability distribution h(X + Y ) is the discrete convolution7 of f and g [34]:

h(X + Y ) = (f ∗ g)(m) =
m∑

p=0

f(p)g(m− p). (21)

Since the number of photons incident on the TMD is the sum of the numbers of photons from
both the source and the background, we can conclude that the source distribution convolves with the
background distribution in this way.

Equation 21 represents a sum over the photon numbers p in the range 0 . . . 8. However, vector ele-
ments are conventionally labeled 1. . . 9, especially in mathematics software. Therefore, for convenience,
we change the base to where photon number 0 is at vector element 1 and form a vector equation:

ρ̃m =
m∑

p=1

apb(m+1−p)

ρ̃ = a ∗ b. (22)

The same form of convolution occurs in two-dimensions to produce the matrix ρ representing photon
statistics from two TMDs, so we can extend Equation 22 to

ρm,n =
m∑

p=1

n∑
q=1

Ap,qB(m+1−p),(n+1−q)

ρ = A ∗B. (23)

where B is the matrix of background photon statistics and A is the matrix of photon statistics from
the source, which we should like to find.

Deconvolution

The convolution theorem [36] can be applied to Equation 23 to give:

F{ρ} = F{A}F{B}, (24)

where the Fourier transforms are two-dimensional and discrete, and the matrix multiplication is
element-wise. Thus, we can recover A by:

A = F−1

{
F{ρ}
F{B}

}
, (25)

where the division of the Fourier transform matrices is element-wise.
7Not to be confused with the convolution matrices introduced in §2.4.
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Finding the loss parameters and input states

Finding the input states ρ and B presents a problem, since we can only measure their respective click
statistics P and PB: their reconstruction requires knowledge of the loss parameters. Ideally we should
like to remove the background from P to obtain the source click statistics PA before we begin finding
the loss parameters, making our assumption of a diagonal state in the Klyshko method a more robust
one. We can use Equation 10 to find expressions for the click statistics from each of the photon statistics
distributions:

P = C1 · L1 · ρ · LT
2 ·CT

2

PA = C1 · L1 ·A · LT
2 ·CT

2

PB = C1 · L1 ·B · LT
2 ·CT

2 . (26)

Our rationale for convolving the source and background photon distributions was the following: the
convolved distribution is that of the sum of the photon numbers from the source and background. In
general, the click distributions do not convolve in this way, since the number of clicks in a TMD is in
general not the sum of the clicks from the source and the background. This is due to the convolution
(now in the sense of §2.4) of photons that occurs in the TMD. For example, a photon from the
background may end up in the same mode as a photon from the source, thus what would have been a
single click in each of the separate distributions PB and PA is now also a single click in P. Hence, we
must note:

P 6= PA ∗PB. (27)

However, we can still remove the background without knowledge of the loss parameters by considering
the reduced photon statistics (see §2.5), which are the statistics after the input state has undergone
loss:

ρ′ = L1 · ρ · LT
2

A′ = L1 ·A · LT
2

B′ = L1 ·B · LT
2 . (28)

By Equations 26, the reduced photon statistics of Equations 28 can also be written as

ρ′ = C−1
1 ·P · (C

T
2 )−1

A′ = C−1
1 ·PA · (CT

2 )−1

B′ = C−1
1 ·PB · (CT

2 )−1. (29)

Equations 29 rely on the existence of the inverses C−1
1 and (CT

2 )−1. Investigation of typical TMD
convolution matrices, for example in Appendix A, reveals that these inverses do exist. In contrast to
the click statistics, the reduced photon statistics distributions do convolve since it is still valid to sum
photon numbers even after losses. We can therefore write:

ρ′ = A′ ∗B′. (30)

Hence, we can apply the deconvolution of Equation 25 with

ρ → ρ′

A → A′

B → B′
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and calculate A′ completely. By Equations 29, we can then find PA = C1 ·A′ ·CT
2 . Now instead of

performing the loss determination and state reconstructions of §4 with Equation 10, we can use:

PA = C1 · L1 ·A · LT
2 ·CT

2 . (31)

Since the background state has been deconvolved out, we are now more confident that A is diagonal,
and hence the generalised Klyshko method should be more reliable. We would expect also that the
reconstruction of A would be more diagonal and more reliable than that carried out with the raw click
statistics P.

D TMD mode timings

TMD mode timings

Table 7 shows the timing of the pulses from the TMDs. The electronics must synchronise with these
in order count correctly.

Mode times / ns
TMD 1 TMD 2
0.0 0.0

131.7 ± 0.5 100.0 ± 0.5
248.9 ± 0.5 200.0 ± 0.5
381.2 ± 0.5 300.0 ± 0.5

Table 7: The time delay of the temporal modes in each multimode fibre TMD after the first temporal mode.
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E Recent update

Since the main report was written, a further experiment was carried out using some of the recom-
mendations in §6. Background measurements were taken in the manner suggested, and the resulting
background click statistics were deconvolved from the data using the method described in Appendix
C. This time, there was a beam splitter after the second harmonic generation. This was used to send
blue power to a second KDP crystal, hence the power hitting our KDP this time was approximately
half that of the previous experiment. Nevertheless, the power readings were still taken directly after
the second harmonic generation.

Efficiency calculation
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Figure 11: The TMD efficiencies.

Figure 11 shows the TMD efficiencies calculated using the method in §5.2. The measurement seems to
have been improved by deconvolution of the background. The Klyshko calculation at lower power again
shows unreliability, giving a large spread of data at power < 15mW. However, results at 15 − 80mW
revealed apparently consistent efficiencies, apart from one ‘residual’ at 30mW, which were used to form
the mean efficiencies for the detectors.

However, at 90mW, we see the same thing that happened last time at a similar blue power from the
SHG crystal - the Klyshko efficiency suddenly jumps up, approximately doubling this time. Given that
this time 90mW SHG blue ≈ 45mW KDP blue, and last time 90mW SHG blue = 90mW KDP blue,
whatever it is that is causing this discontinuity appears to be happening before the down conversion,
most likely in the BBO.
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Background measurement
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Figure 12: The mean detected background photons.

Figure 12 shows the mean background clicks detected. There is a discontinuity in the background
at the same power as the discontinuity in the efficiencies. This suggests the cause of the difficulties in
the Klyshko calculation, and in the state reconstruction at these powers is something independent of
the down conversion process; it could be other processes in the KDP or the BBO.

Reconstructed mean photon number
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Figure 13: The reconstructed mean photon numbers.

Figure 13 shows the reconstructed mean photon number, using the mean efficiencies justified earlier.
There is now an apparent linear relationship between SHG crystal blue power and mean number of
pairs in the reconstructed state. The data at higher power was neglected because the mean efficiency
is meaningless for them. This is an improvement on the previous experiment, since the fit must be at
least linear to agree with the theoretical hyperbolic sine relationship described in §5.4.
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Multithermal fit mode number

0 10 20 30 40 50 60 70 80
10

−1

10
0

10
1

SHG Blue Power / mW

lo
g 10

(s
)

s < 1 is unphysical

s > 2 is very multimode

Figure 14: The number of modes produced by a multithermal fit.

Figure 14 shows the number of modes in a multithermal fit to the reconstructed states. In the
previous experiment, the number of modes in the multithermal fit did not have an apparent pattern.
This time, it seems that up to about 30mW, the fit produces less than two modes. At low power, it
sometimes produces less than one mode, but is probably related to the uncertainty in the state at such
low powers. At 40−80mW, mode number starts to climb. Given that most of the background has now
probably been taken into account, it seems increasingly likely that the difficulties in reconstructing a
thermal state at higher powers are due to a problem with the pump beam incident on the KDP.

Outlook

These results indicate that the source appears to be close to a pure mode down converter a low powers,
but quickly becomes multimode for many of the higher laser powers. This suggests that there is a
problem with the pump beam from the second harmonic generation, which should be investigated.
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